Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Small ; 20(20): e2309200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295089

RESUMO

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.


Assuntos
Álcoois Graxos , Lipídeos , Cristais Líquidos , Nanopartículas , Nanopartículas/química , Álcoois Graxos/química , Cristais Líquidos/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Íons/química , Lipossomos
2.
J Am Chem Soc ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870621

RESUMO

mRNA lipid nanoparticle (LNP) technology presents enormous opportunities to prevent and treat various diseases. Here, we developed a novel series of LNPs containing ionizable amino-lipids showing a remarkable array of tunable and pH-sensitive lyotropic liquid crystalline mesophases including the inverse bicontinuous cubic and hexagonal phases characterized by high-throughput synchrotron radiation X-ray scattering. Furthermore, with an interest in developing mRNA therapeutics for lung macrophage targeting, we discovered that there is a strong correlation between the mesophase transition of the LNPs during acidification and the macrophage association/transfection efficiency of mRNAs. The slight molecular structural differences between the SM-102 and ALC-0315 ionizable lipids are linked to the LNP's ability to transform their internal structures from an amorphous state to the inverse micellar, hexagonal, and finally cubic structures during endosomal maturation. SM-102 LNPs showed exceptionally improved transfection efficiency due to their ability to form a cubic structure at a lower pH than the ALC-0315 analogues, which remained within the hexagonal structure, previously attributed to promoting endosomal escape of the ionizable LNPs. Overall, the new knowledge draws our attention to the important role of mesophase transition in endosomal escape, and the novel LNP libraries reported herein have broad prospects for advancing mRNA therapeutics.

3.
Angew Chem Int Ed Engl ; 62(35): e202304977, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37391876

RESUMO

Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.


Assuntos
COVID-19 , Nanopartículas , Ácidos Nucleicos , Humanos , Lipídeos/química , Vacinas contra COVID-19 , Ácidos Nucleicos/química , COVID-19/prevenção & controle , RNA , Nanopartículas/química , Concentração de Íons de Hidrogênio , RNA Interferente Pequeno
4.
Small ; 16(47): e2004162, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33103337

RESUMO

Enhancement of the detection signal of fluorescence microscopy in highly diluted solutions is of great importance in chemical analysis, sensing, and bioassay applications. Surface nanodroplets with atto- to femto-liter volumes are promising tools for sensitive online detection by integrating their extremely efficient nano-extraction and optical advantages. In this paper, the development of novel basic units of nanodroplets-in-a-microdroplet by simple solvent exchange is reported. The encapsulated nanodroplets are applied for ultrasensitive and online detection in fluorescence imaging. The biphasic nature of the droplet composite enables simultaneous extraction and enrichment of both hydrophobic and hydrophilic compounds. Furthermore, the desirable lensing effect of the curved surface of the nanodroplets enhances the collection of light emitted from the fluorophore extracted in the droplets by ≈60-fold, allowing sensitive and quantitative analysis of the fluorophore using fluorescence microscopy. The results highlight the potential of encapsulated nanodroplets as a simple and innovative method of signal enhancement in chemical analysis. By integrating selective concentration, extraction, and sensitive detection, the encapsulated nanodroplets reported here may have broad applications in many chemical and biological matrices.

5.
Anal Chem ; 91(16): 10371-10375, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31291723

RESUMO

The oil-water partition coefficient of organic compounds is an essential parameter for the determination of their behaviors in environments, food, drug delivery, and biomedical systems, just to name a few. In this work, we establish a highly efficient approach to quantify the partition/distribution coefficient using surface femtoliter droplets. In our approach, droplets of 1-octanol were produced on the surface of a solid substrate in contact with the flow of an aqueous solution of the analyte. The analyte was rapidly enriched in the droplets from the flow and reached the partition equilibrium in a few seconds. The entire procedure was automated by continuous solvent exchange, and the analyte partition in the droplets was quantified from the in situ UV-vis spectrum collected by a microspectrophotometer. Our approach was validated for several substances with the octanol-water partition/distribution coefficient ranging from -1.5 to 4, where our results were in good agreement with the values reported in the literature. This method took ∼3 min to detect one analyte with the volume of the organic solvent at ∼50 µL. Thus, our surface droplet platform can greatly minimize the consumption of both solvent and analytes and can shorten the time for the determination of the partition of new compounds, which overcomes the drawbacks of the traditional shake-flask method and presents excellent reproducibility, high accuracy, cost-effectiveness, and labor-saving operation. The highly efficient micro/nanoextraction, partition, and real-time detection enabled by the surface droplets has the potential for many other high-throughput applications.

6.
Small ; 15(1): e1804683, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30488558

RESUMO

A universal femtoliter surface droplet-based platform for direct quantification of trace of hydrophobic compounds in aqueous solutions is presented. Formation and functionalization of femtoliter droplets, concentrating the analyte in the solution, are integrated into a simple fluidic chamber, taking advantage of the long-term stability, large surface-to-volume ratio, and tunable chemical composition of these droplets. In situ quantification of the extracted analytes is achieved by surface-enhanced Raman scattering (SERS) spectroscopy by nanoparticles on the functionalized droplets. Optimized extraction efficiency and SERS enhancement by tuning droplet composition enable quantitative determination of hydrophobic model compounds of rhodamine 6G, methylene blue, and malachite green with the detection limit of 10-9 to 10-11 m and a large linear range of SERS signal from 10-9 to 10-6 m of the analytes. The approach addresses the current challenges of reproducibility and the lifetime of the substrate in SERS measurements. This novel surface droplet platform combines liquid-liquid extraction and highly sensitive and reproducible SERS detection, providing a promising technique in current chemical analysis related to environment monitoring, biomedical diagnosis, and national security monitoring.

7.
Soft Matter ; 15(30): 6055-6061, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31215583

RESUMO

Moving contact lines of more than two phases dictate a large number of interfacial phenomena. Despite their significance in fundamental and applied processes, the contact lines at a junction of four-phases (two immiscible liquids, a solid and gas) have been addressed only in a few investigations. Here, we report an intriguing phenomenon that follows after the four phases oil, water, solid and gas make contact through the coalescence of two different three-phase contact lines. We combine experimental studies and theoretical analyses to reveal and rationalize the dynamics exhibited upon the coalescence between the contact line of a micron-sized oil droplet and the receding contact line of a millimeter-sized water drop that covers the oil droplet on the substrate. We find that after the coalescence a four-phase contact line is formed for a brief period. However this quadruple contact line is not stable, leading to a 'droplet splitting' effect and eventually expulsion of the oil droplet from the water drop. We then show that the interfacial tension between the different phases and the viscosity of the oil droplet dictate the splitting dynamics. More viscous oils display higher resistance to the extreme deformations of the droplet induced by the instability of the quadruple contact line and no droplet expulsion is observed in such cases.

8.
Langmuir ; 34(32): 9470-9476, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30021434

RESUMO

The crystallization of oil droplets is critical in the processing and storage of lipid-based food and pharmaceutical products. Arrays of femtoliter droplets on a surface offer a unique opportunity to study surfactant-free colloidlike systems. In this work, the crystal growth process in these confined droplets was followed by cooling a model lipid (trimyristin) from a liquid state utilizing synchrotron small-angle X-ray scattering (SAXS). The measurements by SAXS demonstrated a reduced crystallization rate and a greater degree of supercooling required to trigger lipid crystallization in droplets compared to those of bulk lipids. These results suggest that surface droplets crystallize in a stochastic manner. Interestingly, the crystallization rate is slower for larger femtoliter droplets, which may be explained by the onset of crystallization from the three-phase contact line. The larger surface nanodroplets exhibit a smaller ratio of droplet volume to the length of three-phase contact line and hence a slower crystallization rate.

9.
Soft Matter ; 14(14): 2628-2637, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29546893

RESUMO

The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

10.
Soft Matter ; 14(25): 5197-5204, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29780988

RESUMO

Solvent exchange is a simple solution-based process to produce surface nanodroplets over a large area. The final size of the droplets is determined by both the flow and solution conditions for a given substrate. In this work, we investigate the growth dynamics of surface nanodroplets during solvent exchange by using total internal reflection fluorescence microscopy (TIRF). The results show that during the solvent exchange, the formation of surface nanodroplets advanced on the surface in the direction of the flow. The time for the number density and surface coverage of the droplets to reach their respective plateau values is determined by the flow rate. From the observed evolution of the droplet volume and of the size of individual growing droplets, we are able to determine that the growth time of the droplets scales with the Peclet number Pe with a power law ∝Pe-1/2. This is consistent with Taylor-Aris dispersion, shedding light on the diffusive growth dynamics during the solvent exchange. Further, the spatial rearrangement of the droplets during coalescence demonstrates a preference in position shift based on size inequality, namely, the coalesced droplet resides closer to the larger of the two parent droplets. These findings provide a valuable insight toward controlling droplet size and spatial distribution.

11.
Eur Phys J E Soft Matter ; 40(3): 26, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275962

RESUMO

Surface nanodroplets are essential units for many compartmentalised processes from catalysis, liquid-liquid reactions, crystallization, wetting and more. Current techniques for producing submicron droplets are mainly based on top-down approaches, which are increasingly limited as scale reduces. Herein, solvent exchange is demonstrated as a simple solution-based approach for the formation of surface nanodroplets with intermediate and extremely high viscosity (1 000 000 cSt). By solvent exchange, the viscous droplet liquid dissolves in a good solvent that is then displaced by a poor solvent to yield surface droplets for the oversaturaion pulse at the mixing front. Within controlled flow conditions, the geometry of droplets of low and intermediate viscosity liquids can be tailored on the nano and microscale by controlling the flow rate. Meanwhile for extremely viscous liquids, the droplet size is shown to be dependent on the liquid temperature. This work demonstrates that solvent exchange offers a versatile tool for the formation of droplets with a wide range of viscosity.

12.
ACS Appl Mater Interfaces ; 16(19): 24191-24205, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690584

RESUMO

Low discovery rates for new antibiotics, commercial disincentives to invest, and inappropriate use of existing drugs have created a perfect storm of antimicrobial resistance (AMR). This "silent pandemic" of AMR looms as an immense, global threat to human health. In tandem, many potential novel drug candidates are not progressed due to elevated hydrophobicity, which may result in poor intracellular internalization and undesirable serum protein binding. With a reducing arsenal of effective antibiotics, enabling technology platforms that improve the outcome of treatments, such as repurposing existing bioactive agents, is a prospective option. Nanocarrier (NC) mediated drug delivery is one avenue for amplifying the therapeutic outcome. Here, the performance of several antibiotic classes encapsulated within the lipid-based cubosomes is examined. The findings demonstrate that encapsulation affords significant improvements in drug concentration:inhibition outcomes and assists in other therapeutic challenges associated with internalization, enzyme degradation, and protein binding. We emphasize that a currently sidelined compound, novobiocin, became active and revealed a significant increase in inhibition against the pathogenic Gram-negative strain, Pseudomonas aeruginosa. Encapsulation affords co-delivery of multiple bioactives as a strategy for mitigating failure of monotherapies and tackling resistance. The rationale in optimized drug selection and nanocarrier choice is examined by transport modeling which agrees with experimental inhibition results. The results demonstrate that lipid nanocarrier encapsulation may alleviate a range of challenges faced by antibiotic therapies and increase the range of antibiotics available to treat bacterial infections.


Assuntos
Antibacterianos , Portadores de Fármacos , Lipídeos , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Testes de Sensibilidade Microbiana , Humanos , Sistemas de Liberação de Medicamentos
13.
J Colloid Interface Sci ; 663: 82-93, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394820

RESUMO

HYPOTHESIS: Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS: Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS: The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.


Assuntos
Nanopartículas , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , Microscopia Eletrônica de Transmissão , Difusão Dinâmica da Luz , Estrutura Molecular
14.
J Colloid Interface Sci ; 634: 279-289, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542965

RESUMO

HYPOTHESIS: Non-lamellar lyotropic liquid crystal nanoparticles (LLCNPs) are gaining significant interest in the fields of drug delivery and nanomedicine. Traditional, top-down formulation strategies for LLCNPs are typically low-throughput, can lack controllability and reproducibility in the particle size distribution, and may be unsuitable for loading more fragile therapeutics. The development of a controllable, reproducible, scalable, and high-throughput strategy is urgently needed. EXPERIMENTS: Monoolein (MO)-based LLCNPs with various stabilizers (F127, F108, and Tween 80) and phytantriol (PT)-F127 cubosomes were produced at various flow conditions via a bottom-up method using a microfluidic platform. FINDINGS: This simple enabling strategy was used to formulate LLCNPs with lower polydispersity compared to the traditional top-down homogenization method. Significantly, particle size could be quantitatively controlled by varying the overall flow-rate; a scaling law was identified between nanoparticle mean size and the total flow rate (Q) of meansize∼Q-0.15 for MO cubosomes and meansize∼Q-0.19 for PT cubosomes (at a fixed flow rate ratio). Effective size control was achieved for a range of cubosome formulations involving different lipids and stabilizers. The formulation of stable, drug-loaded cubosomes with high encapsulation efficiency using this method was exemplified using calcein as a model drug. This work will further promote the utilisation of LLCNPs in nanomedicine and facilitate their clinical translation.


Assuntos
Cristais Líquidos , Nanopartículas , Cristais Líquidos/química , Microfluídica , Reprodutibilidade dos Testes , Polietilenos/química , Nanopartículas/química , Tamanho da Partícula
15.
Biomater Adv ; 148: 213368, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931081

RESUMO

The treatment of diabetes requires daily administration of the peptide insulin via subcutaneous (SC) injection due to poor stability following oral administration. Enteric capsules, designed to protect against low pH conditions in the stomach by providing a polymeric coating which only breaks down in the small intestine, have failed to significantly increase oral bioavailability for insulin. In parallel, amphiphilic lipid mesophases are versatile carrier materials which can protect encapsulated proteins and peptides from undesirable enzymatic degradation. Here we show the combined delivery capacity of a hydrated bicontinuous cubic lipid mesophase embedded within an enteric capsule. Animal studies demonstrated that the lipid filled enteric capsules could deliver insulin with bioavailabilities (relative to SC injection) as high as 99 % and 150 % for fast and slow acting insulin, respectively. These results provide a promising starting point towards further trials to develop an alternative, non-invasive mode for the delivery of insulin.


Assuntos
Insulina Regular Humana , Insulina , Animais , Intestino Delgado , Estômago , Lipídeos
16.
ACS Appl Mater Interfaces ; 15(18): 21819-21829, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37018059

RESUMO

Mycobacterium tuberculosis (MTB) causes the infectious disease tuberculosis (TB), responsible for more deaths than any other single infectious disease in history. Intracellular MTB are slow growing and difficult to target with traditional antitubercular drugs, leading to the emergence of multidrug resistance in TB infection, which is a major global public health issue. Recent advances in innovative lipid nanotechnologies for drug delivery have demonstrated promising outcomes for chronic infectious diseases but have not yet been tested as potential delivery systems for intracellular infections such as TB. The current study evaluates the potential of monoolein (MO)-based cationic cubosomes for the encapsulation and delivery of the first line antitubercular drug rifampicin (RIF) against an MTB-H37Ra in vitro culture model. In particular, we show that the use of cationic cubosomes as delivery vehicles reduced the minimum inhibitory concentration (MIC) of RIF by 2-fold against actively replicating MTB-H37Ra (compared to that of the free drug) and also shortened the lifecycle duration of axenic MTB-H37Ra from 5 to 3 days. The cubosome-mediated delivery was also found to be effective against intracellular MTB-H37Ra within THP-1 human macrophages, with a 2.8 log reduction in viability of the bacilli after 6 days incubation at the MIC. The killing time was also reduced from 8 to 6 days without distressing the host macrophages. Mechanistic studies on the uptake of RIF-loaded cationic cubosomes using total internal reflection fluorescence microscopy (TIRFM) demonstrated the capacity of these lipid particles to effectively target intracellular bacteria. Overall, these results demonstrate that cationic cubosomes are a potent delivery system for the antitubercular drug RIF for therapeutic management of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/tratamento farmacológico , Rifampina/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Lipídeos/farmacologia
17.
ACS Appl Mater Interfaces ; 15(23): 27670-27686, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262346

RESUMO

An improved vaccine is urgently needed to replace the now more than 100-year-old Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB) disease, which represents a significant burden on global public health. Mycolic acid, or cord factor trehalose 6,6' dimycolate (TDM), a lipid component abundant in the cell wall of the pathogen Mycobacterium tuberculosis (MTB), has been shown to have strong immunostimulatory activity but remains underexplored due to its high toxicity and poor solubility. Herein, we employed a novel strategy to encapsulate TDM within a cubosome lipid nanocarrier as a potential subunit nanovaccine candidate against TB. This strategy not only increased the solubility and reduced the toxicity of TDM but also elicited a protective immune response to control MTB growth in macrophages. Both pre-treatment and concurrent treatment of the TDM encapsulated in lipid monoolein (MO) cubosomes (MO-TDM) (1 mol %) induced a strong proinflammatory cytokine response in MTB-infected macrophages, due to epigenetic changes at the promoters of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in comparison to the untreated control. Furthermore, treatment with MO-TDM (1 mol %) cubosomes significantly improved antigen processing and presentation capabilities of MTB-infected macrophages to CD4 T cells. The ability of MO-TDM (1 mol %) cubosomes to induce a robust innate and adaptive response in vitro was further supported by a mathematical modeling study predicting the vaccine efficacy in vivo. Overall, these results indicate a strong immunostimulatory effect of TDM when delivered through the lipid nanocarrier, suggesting its potential as a novel TB vaccine.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Idoso de 80 Anos ou mais , Fatores Corda/farmacologia , Estudos Prospectivos , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle , Citocinas
18.
Adv Mater ; 35(21): e2210392, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908046

RESUMO

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico , Insulina
19.
Nanoscale ; 14(48): 17940-17954, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36349848

RESUMO

Carbon nanodots (C-dots) have attracted much attention for their use in the fields of bioimaging, drug delivery, and sensing due to their excellent fluorescent and photoluminescent properties, photostability, biocompatibility, and amenability to surface modification. Herein, we report a nanocomposite formulation of C-dots (<5 nm) encapsulated in lipid-based lyotropic liquid crystalline nanoparticles (∼250 nm) via either passive diffusion or electrostatic mechanisms. The physicochemical properties of the nanocomposite formulation including particle size, surface charge, internal cubic nanostructures, and pH-dependent fluorescent properties were characterised. Upon loading of C-dots into lipid nanoparticles, the highly ordered inverse bicontinuous cubic mesophase existed in the internal phase of the nanoparticles, demonstrated by synchrotron small angle X-ray scattering, molecular dynamic simulation and cryogenic transmission electron microscopy. The pH-dependent fluorescent property of the C-dots was modified via electrostatic interaction between the C-dots and cationic lipid nanoparticles, which further enhanced the brightness of C-dots through self-quenching prevention. The cytotoxicity and cellular uptake efficiency of the developed nanocomposites were also examined in an epithelial gastric adenocarcinoma cell line (AGS) and a macrophage cell line (stimulated THP-1). Compared to free C-dots, the uptake and cell imaging potential of the C-dot nanocomposites was significantly improved, by several orders of magnitude as demonstrated by cytoplasmic fluorescent intensities using confocal microscopy. Loading C-dots into mesoporous lipid nanocarriers presents a new way of modifying C-dot physicochemical and fluorescent properties, alternative to direct chemical surface modification, and advances the bioimaging potential of C-dots by enhancing cellular uptake efficiency and converging C-dot light emission.


Assuntos
Carbono , Nanocompostos , Carbono/química , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula , Lipídeos
20.
Biophys Chem ; 287: 106830, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35635892

RESUMO

Membrane-mediated assembly has been well characterised for toxic amyloid species such as the amyloid-ß peptide implicated in Alzheimer's disease. However, little is known about the membrane-mediated assembly of functional-amyloid forming peptides, recently identified as a natural storage state for neuropeptide hormones in vivo. Here, we study the aggregation of somatostatin-14 (SST-14) co-incubated with model lipid membranes. Atomic force microscopy (AFM) studies confirmed that nanofibrils formed in the presence of various lipid membranes display reduced fibrillogenesis and promote the formation of non-fibrillar oligomers. Both circular dichroism (CD) and intrinsic tryptophan fluorescence studies confirmed interaction between the peptide and the lipid bilayer; this interaction appears to drive changes in membrane-mediated aggregation kinetics. We show that both the surface charge of the membrane and chain packing drive changes in the electrostatic and hydrophobic interactions between the peptide and the membrane, and hence the rate of assembly. The similarities in the effect of the lipid membrane on aggregation of functional amyloids and the more well studied toxic amyloids suggest strong aggregation modifying lipid bilayer interactions are a ubiquitous feature of all amyloid fibrils and highlight the need for further investigation as to why this leads to toxicity in some systems and not others.


Assuntos
Amiloide , Amiloidose , Lipídeos de Membrana , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Somatostatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA