Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 28(5): 1182-1196, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29528528

RESUMO

Honey bees require nectar and pollen from flowers: nectar for energy and pollen for growth. The demand for nectar and pollen varies during the year, with more pollen needed in spring for colony population growth and more nectar needed in summer to sustain the maximum colony size and collect surplus nectar stores for winter. Sufficient bee forage is therefore necessary to ensure a healthy bee colony. Land-use changes can reduce the availability of floral resources suitable for bees, thereby increasing the susceptibility of bees to other stressors such as disease and pesticides. In contrast, land-based management decisions to protect or plant bee forage can enhance pollen and nectar supply to bees while meeting other goals such as riparian planting for water-quality improvement. Commercial demand for honey can also put pressure on floral resources through over-crowding of hives. To help understand and manage floral resources for bees, we developed a spatial model for mapping monthly nectar and pollen production from maps of land cover. Based on monthly estimated production data we mapped potential monthly supply of nectar and pollen to a given apiary location in the landscape. This is done by summing the total production within the foraging range of the apiary while subtracting the estimated nectar converted to energy for collection. Ratios of estimated supply over theoretical hive demand may then be used to infer a potential landscape carrying capacity to sustain hives. This model framework is quantitative and spatial, utilizing estimated flight energy costs for nectar foraging. It can contribute to management decisions such as where apiaries could be placed in the landscape depending on floral resources and where nectar limited areas may be located. It can contribute to planning areas for bee protection or planting such as in riparian vegetation. This would aid managed bee health, wild pollinator protection, and honey production. We demonstrate the methods in a case study in New Zealand where there is a growing demand for manuka (Leptospermum scoparium) honey production.


Assuntos
Abelhas/fisiologia , Flores/química , Néctar de Plantas/análise , Pólen , Animais , Modelos Biológicos , Nova Zelândia , Polinização , Estações do Ano
2.
Environ Sci Technol ; 50(4): 1897-905, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771227

RESUMO

Rivers and streams in New Zealand are natural with free access and used by many people for swimming and fishing. However, pastoral farming with free grazing animals is a common land use in New Zealand and faecal microorganisms from them often end up in waterways. These microorganisms can seriously affect human and animal health if ingested. This paper describes spatial modeling using GIS of Escherichia coli sources in a large catchment (350 000 ha), the Ruamahanga. By examining the pathway of water over and through soils, it is possible to determine whether E. coli sources are connected to waterways or not. The map of E. coli sources connected to waterways provides useful context to those setting water quality limits. This approach avoids the complexity of modeling the fate and transport of E. coli in waterways, yet still permits the assessment of catchment-wide mitigation and best management practice. Fencing of waterways would minimize E. coli sources directly defecated to water and would reduce total E. coli sources by approximately 35%. Introduction of dung beetles would minimize sources connected to waterways by overland flow and would reduce total E. coli sources by approximately 35%. Construction of dairy effluent ponds would minimize sources connected to waterways through high bypass flow in soils and would reduce total E. coli sources by approximately 25%.


Assuntos
Escherichia coli/isolamento & purificação , Rios/microbiologia , Microbiologia da Água , Poluentes da Água , Criação de Animais Domésticos , Animais , Meio Ambiente , Escherichia coli/classificação , Fezes/química , Humanos , Nova Zelândia , Movimentos da Água , Poluentes da Água/análise
3.
J Environ Manage ; 95(1): 124-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22115517

RESUMO

The tradeoffs between the regulation of soil erosion, provision of fresh water, and climate regulation associated with new Pinus radiata forests in New Zealand are explored using national models. These three ecosystem services for which there is strong demand are monetised as commodities (avoided soil erosion is NZ $1 per tonne; water is NZ $1 per cubic metre; and sequestered carbon is assumed to be NZ $73 per tonne). This permits their summation on a spatial basis to produce a national map of the net benefit of these ecosystem services. Net benefit is spatially variable depending primarily on the relative mix of forest growth rates and demand for irrigation water. New P. radiata forests (once mature) generally reduce mass-movement erosion by an order of magnitude. This provides significant benefits for erosion control where there are high natural rates of erosion. Benefits are especially large in catchments where high sedimentation is increasing flood risk and degrading aquatic ecosystems. The generally high growth rates of P. radiata in New Zealand (8.5 tonnesCha(-1)yr(-1) on average for existing forest) add significant environmental benefits of carbon sinks to climate regulation. However, the reduction of water yield associated with new forests (between 30% and 50%) can neutralise these benefits in catchments where there is demand for irrigation water, such as the eastern foothills of the Southern Alps and the tussock grasslands in the South Island.


Assuntos
Ciclo do Carbono , Ecossistema , Modelos Biológicos , Modelos Econômicos , Ciclo Hidrológico , Agricultura Florestal , Nova Zelândia , Pinus/fisiologia , Solo
4.
Environ Manage ; 46(3): 484-93, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20706718

RESUMO

Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic-and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.


Assuntos
Monitoramento Ambiental/métodos , Movimentos da Água , Ecossistema , Água Doce , Modelos Teóricos , Nova Zelândia , Oceanos e Mares , Fatores Socioeconômicos
5.
Environ Manage ; 39(3): 316-25, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17265113

RESUMO

The extent of wetland in New Zealand has decreased by approximately 90% since European settlement began in 1840. Remaining wetlands continue to be threatened by drainage, weeds, and pest invasion. This article presents a rapid method for broad-scale mapping and prioritising palustrine and estuarine wetlands for conservation. Classes of wetland (lacustrine, estuarine, riverine, marine, and palustrine) were mapped using Landsat ETM+ imagery and centre-points of palustrine and estuarine sites as ancillary data. The results shown are for the Manawatu-Wanganui region, which was found to have 3060 ha of palustrine and 250 ha of estuarine wetlands. To set conservation priorities, landscape indicators were computed from a land-cover map and a digital terrain model. Four global indicators were used (representativeness, area, surrounding naturalness, and connectivity), and each was assigned a value to score wetland sites in the region. The final score is an additive function that weights the relative importance of each indicator (i.e., multicriteria decision analysis). The whole process of mapping and ranking wetlands in the Manawatu-Wanganui region took only 6 weeks. The rapid methodology means that consistent wetland inventories and ranking can now actually be produced at reasonable cost, and conservation resources may therefore be better targeted. With complete inventories and priority lists of wetlands, managers will be able to plan for conservation without having to wait for the collection of detailed biologic information, which may now also be prioritised.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Nova Zelândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA