Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 186: 106488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061668

RESUMO

Trypanosoma cruzi parasite - causal Chagas disease agent - affects about 7 million people; no vaccine is available, and current medications have not been entirely effective. Multidisciplinary efforts are necessary for developing clinical vaccine prototypes. Thus, this research study aims to assess the expressed and whole-cell administration protection of the oral vaccine prototype Tc24:Co1 using Schizochytrium sp. microalga. High recombinant protein expression yields (675 µg/L) of algal culture were obtained. Additionally, Schizochytrium sp.-Tc24:Co1 resulted stable at 4 °C for up to six months and at 25 °C for three months. After receiving four oral doses of the vaccine, the mice showed a significant humoral immune response and a parasitemia reduction associated with a lack of heart inflammatory damage compared with the unvaccinated controls. The Schizochytrium sp.-Tc24:Co1 vaccine demonstrates to be promising as a prototype for further development showing protective effects against a T. cruzi challenge in a mouse model.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Humanos , Animais , Camundongos , Doença de Chagas/tratamento farmacológico , Proteínas Recombinantes , Modelos Animais de Doenças
2.
Exp Parasitol ; 249: 108519, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004860

RESUMO

Leishmaniasis is a vector-borne neglected tropical disease caused by the Leishmania spp. Parasite. The disease is transmitted to humans and animals by the bite of infected female sandflies during the ingestion of bloodmeal. Because current drug treatments induce toxicity and parasite resistance, there is an urgent need to evaluate new drugs. Most therapeutics target the differentiation of promastigotes to amastigotes, which is necessary to maintain Leishmania infection. However, in vitro assays are laborious, time-consuming, and depend on the experience of the technician. In this study, we aimed to establish a short-term method to assess the differentiation status of Leishmania mexicana (L. mexicana) using flow cytometry. Here, we showed that flow cytometry provides a rapid means to quantify parasite differentiation in cell culture as reliably as light microscopy. Interestingly, we found using flow cytometry that miltefosine reduced promastigote-to-amastigote differentiation of L. mexicana. We conclude that flow cytometry provides a means to rapidly assay the efficacy of small molecules or natural compounds as potential anti-leishmanials.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose , Humanos , Animais , Feminino , Leishmania mexicana/fisiologia , Citometria de Fluxo , Diferenciação Celular
3.
PLoS One ; 18(10): e0292520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37797045

RESUMO

Chagas disease by Trypanosoma cruzi (T. cruzi) infection is a leading cause of myocarditis worldwide. Chagas cardiomyopathy is presented with a wide variety of conduction abnormalities including arrhythmias, first- and second-degree atrioventricular blockade, left ventricular systolic dysfunction and some cases heart failure leading to the death. Currently, there are no effective treatments available against advanced Chagas disease. With the advance in the development of novel therapies, it is important to utilize an animal model that can effectively replicate the diverse stages of Chagas disease, including chronic asymptomatic and symptomatic infection, that are akin to those observed in humans. Therefore, to characterize the cardiac alterations during the evolution of the infection, we evaluated the progression of cardiomyopathy caused by T. cruzi H1 infection in both BALB/c and ICR mouse models by performing electrocardiogram (ECG) studies in unanesthetized mice every month until 210 days post-infection (dpi). In the late chronic phase of infection, we also performed echocardiogram (ECHO) studies to further assess cardiac function. In conclusion, we demonstrated that ICR mice were more susceptible to cardiac alterations compared to BALB/c mice and both mouse strains are suitable experimental models to study chronic T. cruzi infection and novel treatments.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Humanos , Animais , Camundongos , Infecção Persistente , Camundongos Endogâmicos ICR , Coração
4.
PLoS Negl Trop Dis ; 16(9): e0010258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095001

RESUMO

BACKGROUND: Chagas disease (CD) is caused by Trypanosoma cruzi and affects 6-7 million people worldwide. Approximately 30% of chronic patients develop chronic chagasic cardiomyopathy (CCC) after decades. Benznidazole (BNZ), one of the first-line chemotherapy used for CD, induces toxicity and fails to halt the progression of CCC in chronic patients. The recombinant parasite-derived antigens, including Tc24, Tc24-C4, TSA-1, and TSA-1-C4 with Toll-like receptor 4 (TLR-4) agonist-adjuvants reduce cardiac parasite burdens, heart inflammation, and fibrosis, leading us to envision their use as immunotherapy together with BNZ. Given genetic immunization (DNA vaccines) encoding Tc24 and TSA-1 induce protective immunity in mice and dogs, we propose that immunization with the corresponding recombinant proteins offers an alternative and feasible strategy to develop these antigens as a bivalent human vaccine. We hypothesized that a low dose of BNZ in combination with a therapeutic vaccine (TSA-1-C4 and Tc24-C4 antigens formulated with a synthetic TLR-4 agonist-adjuvant, E6020-SE) given during early chronic infection, could prevent cardiac disease progression and provide antigen-specific T cell immunity. METHODOLOGY/ PRINCIPAL FINDINGS: We evaluated the therapeutic vaccine candidate plus BNZ (25 mg/kg/day/7 days) given on days 72 and 79 post-infection (p.i) (early chronic phase). Fibrosis, inflammation, and parasite burden were quantified in heart tissue at day 200 p.i. (late chronic phase). Further, spleen cells were collected to evaluate antigen-specific CD4+ and CD8+ T cell immune response, using flow cytometry. We found that vaccine-linked BNZ treated mice had lower cardiac fibrosis compared to the infected untreated control group. Moreover, cells from mice that received the immunotherapy had higher stimulation index of antigen-specific CD8+Perforin+ T cells as well as antigen-specific central memory T cells compared to the infected untreated control. CONCLUSIONS: Our results suggest that the bivalent immunotherapy together with BNZ treatment given during early chronic infection protects BALB/c mice against cardiac fibrosis progression and activates a strong CD8+ T cell response by in vitro restimulation, evidencing the induction of a long-lasting T. cruzi-immunity.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Vacinas de DNA , Adjuvantes Imunológicos , Animais , Doença de Chagas/tratamento farmacológico , Cães , Fibrose , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Nitroimidazóis , Perforina , Proteínas Recombinantes , Receptor 4 Toll-Like , Trypanosoma cruzi/genética , Vacinas Combinadas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA