Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 123(3): 366-76, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24196071

RESUMO

Neutrophil lifespan and function are regulated by hypoxia via components of the hypoxia inducible factor (HIF)/von Hippel Lindau/hydroxylase pathway, including specific roles for HIF-1α and prolyl hydroxylase-3. HIF-2α has both distinct and overlapping biological roles with HIF-1α and has not previously been studied in the context of neutrophil biology. We investigated the role of HIF-2α in regulating key neutrophil functions. Human and murine peripheral blood neutrophils expressed HIF-2α, with expression up-regulated by acute and chronic inflammatory stimuli and in disease-associated inflammatory neutrophil. HIF2A gain-of-function mutations resulted in a reduction in neutrophil apoptosis both ex vivo, through the study of patient cells, and in vivo in a zebrafish tail injury model. In contrast, HIF-2α-deficient murine inflammatory neutrophils displayed increased sensitivity to nitrosative stress induced apoptosis ex vivo and increased neutrophil apoptosis in vivo, resulting in a reduction in neutrophilic inflammation and reduced tissue injury. Expression of HIF-2α was temporally dissociated from HIF-1α in vivo and predominated in the resolution phase of inflammation. These data support a critical and selective role for HIF-2α in persistence of neutrophilic inflammation and provide a platform to dissect the therapeutic utility of targeting HIF-2α in chronic inflammatory diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Inflamação , Neutrófilos/metabolismo , Animais , Apoptose , Hipóxia Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Muramidase , Neutrófilos/citologia , Fagocitose , Fenótipo , RNA/metabolismo , Explosão Respiratória , Peixe-Zebra
2.
J Clin Invest ; 130(6): 3221-3237, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191647

RESUMO

Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution.


Assuntos
Movimento Celular/imunologia , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Neutrófilos/patologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA