Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Appl Environ Microbiol ; 80(23): 7337-47, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239893

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a Shiga-toxigenic pathogen capable of inducing severe forms of enteritis (e.g., hemorrhagic colitis) and extraintestinal sequelae (e.g., hemolytic-uremic syndrome). The molecular basis of colonization of human and animal hosts by EHEC is not yet completely understood, and an improved understanding of EHEC mucosal adherence may lead to the development of interventions that could disrupt host colonization. FdeC, also referred to by its IHE3034 locus tag ECOK1_0290, is an intimin-like protein that was recently shown to contribute to kidney colonization in a mouse urinary tract infection model. The expression of FdeC is tightly regulated in vitro, and FdeC shows promise as a vaccine candidate against extraintestinal E. coli strains. In this study, we characterized the prevalence, regulation, and function of fdeC in EHEC. We showed that the fdeC gene is conserved in both O157 and non-O157 EHEC and encodes a protein that is expressed at the cell surface and promotes biofilm formation under continuous-flow conditions in a recombinant E. coli strain background. We also identified culture conditions under which FdeC is expressed and showed that minor alterations of these conditions, such as changes in temperature, can significantly alter the level of FdeC expression. Additionally, we demonstrated that the transcription of the fdeC gene is repressed by the global regulator H-NS. Taken together, our data suggest a role for FdeC in EHEC when it grows at temperatures above 37°C, a condition relevant to its specialized niche at the rectoanal junctions of cattle.


Assuntos
Adesinas de Escherichia coli/biossíntese , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/fisiologia , Perfilação da Expressão Gênica , Temperatura
2.
J Immunol ; 184(5): 2539-50, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20107187

RESUMO

With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor and the PI3K, NF-kappaB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/metabolismo , Quimiocinas/metabolismo , Leucócitos/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Linhagem Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Quimiocina CXCL1/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Leucócitos/citologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Bacteriol ; 190(24): 7994-8002, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931134

RESUMO

Moraxella catarrhalis is a gram-negative respiratory pathogen that is an important causative agent for otitis media and exacerbations of chronic obstructive pulmonary disease. We have previously predicted the outer membrane protein M35 to be a general porin, and in the current study, we have investigated the function of M35 and its importance for survival of M. catarrhalis in vivo. Lipid bilayer experiments reveal that refolded M35 functions as a channel that is typical of gram-negative bacterial porins. M35 forms wide and water-filled channels with a single-channel conductance of about 1.25 nS in 1 M KCl solution and has only a small selectivity for cations over anions. When the in vitro growth characteristics of two M35 deletion mutant strains of M. catarrhalis were compared to the wild-type parent isolates, the growth of the mutant strains was inhibited only under nutrient-poor conditions. This growth defect could be eliminated by additional glutamic acid, but not additional aspartic acid, glycine, sucrose, or glucose. The mutant strains compensated for the lack of M35 by enhancing their uptake of glutamic acid, and this enhanced rate of glutamic acid uptake was attributed to the compensatory upregulation of a protein of approximately 40 kDa. M35 was also found to be essential for nasal colonization of mice, demonstrating that its presence is essential for survival of M. catarrhalis in vivo. These results suggest that M35 is a general porin that is necessary for the uptake of important energy sources by M. catarrhalis and that it is likely that M35 is an essential functional protein for in vivo colonization.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Moraxella catarrhalis/crescimento & desenvolvimento , Nasofaringe/microbiologia , Porinas/metabolismo , Animais , Ácido Glutâmico/metabolismo , Bicamadas Lipídicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Moraxella catarrhalis/metabolismo , Infecções por Moraxellaceae/microbiologia , Mutagênese Insercional , Mutação
4.
J Proteomics ; 115: 93-106, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25534882

RESUMO

Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome. BIOLOGICAL SIGNIFICANCE: In this study a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles was used to define the outer membrane proteome of a large uropathogenic E. coli (UPEC) collection. Our results provide an inventory of proteins expressed on the surface of UPEC, and provide a framework for understanding the composition of the UPEC OM proteome. The method enables the rapid characterisation of the E. coli surface proteome and could easily be applied to the large-scale outer membrane protein profiling of other Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteoma , Escherichia coli Uropatogênica , Fatores de Virulência , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Proteoma/genética , Proteoma/metabolismo , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Innate Immun ; 19(3): 315-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23109507

RESUMO

Innate immunity is triggered by a variety of bacterial molecules, resulting in both protective and potentially harmful pro-inflammatory responses. Further, innate immunity also provides a mechanism for the maintenance of homeostasis between the host immune system and symbiotic or non-pathogenic microorganisms. However, the bacterial factors that mediate these protective effects have been incompletely defined. Here, it was demonstrated that the lantiobiotic nisin Z is able to modulate host immune responses and mediate protective host immunity. Nisin Z induced the secretion of the chemokines MCP-1, IL-8 and Gro-α, and significantly reduced TNF-α induction in response to bacterial LPS in human PBMC. The results correlated with the ability of nisin Z to confer protection against both the Gram-positive organism Staphylococcus aureus, and the Gram-negatives Salmonella enterica sv. Typhimurium and Escherichia coli in murine challenge models. Mechanistic studies revealed that nisin Z modulates host immunity through similar mechanisms as natural host defense peptides, engaging multiple signal transduction pathways and growth factor receptors. The results presented herein demonstrate that, in addition to nisin Z, other bacterial cationic peptides and, in particular, the lantibiotics, could represent a new class of secreted bacterial molecule with immunomodulatory activities.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Escherichia coli/imunologia , Nisina/análogos & derivados , Salmonella enterica/imunologia , Staphylococcus aureus/imunologia , Animais , Carga Bacteriana/efeitos da radiação , Linhagem Celular , Quimiocinas/metabolismo , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Imunomodulação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nisina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Immunol ; 2: 13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22566804

RESUMO

Moraxella catarrhalis is a significant cause of respiratory tract infection against which a vaccine is sought. Several outer membrane proteins are currently under investigation as potential vaccine antigens, including the porin M35. We have previously shown that the third external loop of M35 was immunodominant over the remainder of the protein for antibody produced in mice against the refolded recombinant protein. However, as this loop is predicted to fold inside the porin channel we also predicted that it would not be accessible to these antibodies when M35 is expressed on the surface of the bacteria in its native conformation. This study investigated the functional activity of antibodies against M35 and those specific for the loop 3 region of M35 in vitro and in vivo. Antisera from mice immunized with M35 or the loop 3-deletion, M35loop3(-), recombinant proteins were not bactericidal but did have enhanced opsonic activity, whereas antibodies raised against the loop 3 peptide were not opsoniszing indicating that the immunodominant loop 3 of M35 was not accessible to antibody as we had previously predicted. Mucosal immunization with M35, M35 that had an antigenically altered loop 3 [M35(ID78)] and M35loop3(-) enhanced the clearance of M. catarrhalis from the lungs of mice challenged with live M. catarrhalis. The in vivo clearance of bacteria in the mice with the M35-derived protein constructs correlated significantly (p < 0.001) with the opsonic activity assessed an in vitro opsonophagocytosis assay. This study has demonstrated that the immunodominant B-cell epitope to loop 3 of the M. catarrhalis outer membrane protein M35 is not associated with immune protection and that M35-specific antibodies are not bactericidal but are opsoniszing. The opsoniszing activity correlated with in vivo clearance of the bacteria suggesting that opsoniszing antibody may be a good correlate of immune protection.

7.
Front Microbiol ; 2: 120, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687429

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence.

8.
Trends Biotechnol ; 27(10): 582-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19683819

RESUMO

A fundamentally new strategy for the treatment of infectious disease is the modulation of host immune responses to enhance clearance of infectious agents and reduce tissue damage due to inflammation. Antimicrobial host defense peptides have been investigated for their potential as a new class of antimicrobial drugs. Recently their immunomodulatory activities have begun to be appreciated. Modulation of innate immunity by synthetic variants of host defense peptides, called innate defense regulators (IDRs), is protective without direct antimicrobial action. We discuss the potential and current limitations in exploiting the immunomodulatory activity of IDRs as a novel anti-infective pathway. IDRs show significant promise and current research is uncovering mechanistic information that will aid in the future development of IDRs for clinical use.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fatores Imunológicos/farmacologia , Doenças Transmissíveis/tratamento farmacológico , Humanos
9.
J Bacteriol ; 187(18): 6528-35, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16159786

RESUMO

Moraxella catarrhalis is a gram-negative bacterium that is mainly responsible for respiratory tract infections. In this study we report a novel outer membrane protein (OMP), designated M35, with a molecular mass of 36.1 kDa. This protein was structurally homologous to classic gram-negative porins, such as OMP C from Escherichia coli and OMP K36 from Klebsiella pneumoniae, with a predicted structure of 8 surface loops and 16 antiparallel beta-sheets. The DNA sequences of the genes from 18 diverse clinical isolates showed that the gene was highly conserved (99.6 to 100% of nucleotides), with only one isolate (ID78LN266) having base variations that resulted in amino acid substitutions. Electrophoresis and analysis of recognition of the protein using mouse anti-M35 sera showed that M35 was expressed on the bacterial surface and constitutively expressed across M. catarrhalis isolates, with only ID78LN266 showing poor antibody recognition. Our results showed that the single amino acid mutation in loop 3 significantly affected antibody recognition, indicating that loop 3 appeared to contain an immunodominant B-cell epitope. The antibody specificity to loop 3 may be a potential mechanism for evasion of host immune responses targeted to M35, since loop 3 should theoretically orientate into the porin channel. Thus, M35 is a highly conserved, surface-expressed protein that is of significance for its potential functional role as an M. catarrhalis porin and is of interest as a vaccine candidate.


Assuntos
Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Moraxella catarrhalis/química , Porinas/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Genes Bacterianos , Porinas/química , Porinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA