Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 446(7139): 1075-8, 2007 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-17460671

RESUMO

The occurrence of earthquakes in the lower crust near continental rifts has long been puzzling, as the lower crust is generally thought to be too hot for brittle failure to occur. Such anomalous events have usually been explained in terms of the lower crust being cooler than normal. But if the lower crust is indeed cold enough to produce earthquakes, then the uppermost mantle beneath it should also be cold enough, and yet uppermost mantle earthquakes are not observed. Numerous lower-crustal earthquakes occur near the southwestern termination of the Taupo Volcanic Zone (TVZ), an active continental rift in New Zealand. Here we present three-dimensional tomographic imaging of seismic velocities and seismic attenuation in this region using data from a dense seismograph deployment. We find that crustal earthquakes accurately relocated with our three-dimensional seismic velocity model form a continuous band along the rift, deepening from mostly less than 10 km in the central TVZ to depths of 30-40 km in the lower crust, 30 km southwest of the termination of the volcanic zone. These earthquakes often occur in swarms, suggesting fluid movement in critically loaded fault zones. Seismic velocities within the band are also consistent with the presence of fluids, and the deepening seismicity parallels the boundary between high seismic attenuation (interpreted as partial melt) within the central TVZ and low seismic attenuation in the crust to the southwest. This linking of upper and lower-crustal seismicity and crustal structure allows us to propose a common explanation for all the seismicity, involving the weakening of faults on the periphery of an otherwise dry, mafic crust by hot fluids, including those exsolved from underlying melt. Such fluids may generally be an important driver of lower-crustal seismicity near continental rifts.

2.
Science ; 300(5622): 1113-8, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12750512

RESUMO

The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA