Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(38): 11338-11350, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34523932

RESUMO

MXenes, 2D nanomaterials derived from ceramic MAX phases, have drawn considerable interest in a wide variety of fields including energy storage, catalysis, and sensing. There are many possible MXene compositions due to the chemical and structural diversity of parent MAX phases, which can bear different possible metal atoms "M", number of layers, and carbon or nitrogen "X" constituents. Despite the potential variety in MXene types, the bulk of MXene research focuses upon the first MXene discovered, Ti3C2T. With the recent discovery of polymer/MXene multilayer assemblies as thin films and coatings, there is a need to broaden the accessible types of multilayers by including MXenes other than Ti3C2Tz; however, it is not clear how altering the MXene type influences the resulting multilayer growth and properties. Here, we report on the first use of MXenes other than Ti3C2Tz, specifically Ti2CTz and Nb2CTz, for the layer-by-layer (LbL) assembly of polycation/MXene multilayers. By comparing these MXenes, we evaluate both how changing M (Ti vs Nb) and "n" (Ti3C2Tzvs Ti2CTz) affect the growth and properties of the resulting multilayer. Specifically, the aqueous LbL assembly of each MXene with poly(diallyldimethylammonium) into films and coatings is examined. Further, we compare the oxidative stability, optoelectronic properties (refractive index, absorption coefficient, optical conductivity, and direct and indirect optical band gaps), and the radio frequency heating response of each multilayer. We observe that MXene multilayers with higher "n" are more electrically conductive and oxidatively stable. We also demonstrate that Nb2CTz containing films have lower optical band gaps and refractive indices at the cost of lower electrical conductivities as compared to their Ti2CTz counterparts. Our work demonstrates that the properties of MXene/polycation multilayers are highly dependent on the choice of constituent MXene and that the MXene type can be altered to suit specific applications.

2.
Chem Commun (Camb) ; 58(73): 10202-10205, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000425

RESUMO

Despite numerous prior reports of molten salt etching of MAX phases, few of these reports achieved water-dispersible MXene nanosheets, and none for Nb-based MXenes. Here we demonstrate the synthesis and aqueous dispersibility of Nb2CTZ nanosheets via molten salt etching and utilizing a KOH wash to add hydroxyl surface groups. However, little is known about the oxidation of molten salt etched MXenes compared to acid-etched MXenes. Our results indicate slower oxidation behavior for MXenes etched by molten salts, which may be due to the decreased amount of oxygen-containing terminal groups.

3.
ACS Appl Mater Interfaces ; 13(12): 14068-14076, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33729765

RESUMO

As the demand for wearable electronic devices increases, interest in small, light, and deformable energy storage devices follows suit. Among these devices, wire-shaped supercapacitors (WSCs) are considered key components of wearable technology due to their geometric similarity to woven fiber. One potential method for creating WSC devices is the layer-by-layer (LbL) assembly technique, which is a "bottom-up" method for electrode fabrication. WSCs require conformal and adhesive coatings of the functional material to the wire-shaped substrate, which is difficult to obtain with other processing techniques such as vacuum filtration or spray-coating. However, the LbL assembly technique produces conformal and robust coatings that can be deposited onto a variety of substrates and shapes, including wires. In this study, we report WSCs made using the LbL assembly of alternating layers of positively charged reduced graphene oxide functionalized with poly(diallyldimethylammonium chloride) and negatively charged Ti3C2Tx MXene nanosheets conformally deposited on activated carbon yarns. In this construct, the added LbL film enhances capacitance, energy density, and power density by 240, 227, and 109%, respectively, relative to the uncoated activated carbon yarn, yielding high specific and volumetric capacitances (237 F g-1, 2193 F cm-3). In addition, the WSC possesses good mechanical stability, retaining 90% of its initial capacity after 200 bending cycles. This study demonstrates that LbL coatings on carbon yarns are promising as linear energy storage devices for fibrous electronics.

4.
ACS Appl Mater Interfaces ; 11(51): 47929-47938, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31774650

RESUMO

The growing demand for compact energy storage devices may be met through the use of thin-film microbatteries, which generally rely on charge storage in thin or conformal layers. A promising technique for creating thin-film electrodes is layer-by-layer (LbL) assembly, based on the alternating adsorption of oppositely charged species to a surface to form a nanostructured electrode. Thin-film energy storage devices must have a high energy density within a limited space, so new electrode structures, materials, and assembly methods are important. To this end, both two-dimensional MXenes and polyaniline nanofibers (PNFs) have shown promising energy storage properties. Here, we report on the LbL assembly of positively charged PNFs and negatively charged Ti3C2Tx MXenes into hybrid electrodes for thin-film energy storage devices. The successful assembly is demonstrated in which MXenes and PNFs are deposited in films of 49 nm/layer pair thickness. The resulting composition was 77 wt % PNFs and 23 wt % MXenes. The charge storage process was deconvoluted into faradaic/non-faradaic contributions and separated into contributions from PNFs and MXenes. A sandwich cell showed a maximum areal capacity, energy, and power of 17.6 µA h cm-2, 22.1 µW h cm-2, and 1.5 mW cm-2, respectively, for PNF/MXene multilayers of about 2 µm thickness. This work suggests the possibility of using LbL PNF/MXene thin films as electrode materials for thin-film energy storage devices used in next-generation small electronics.

5.
ACS Appl Mater Interfaces ; 10(26): 22793-22800, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29893541

RESUMO

We demonstrate a facile route to in situ growth of lyotropic zirconium phosphate (ZrP) nanoplates on textiles via an interfacial crystal growing process. The as-prepared hybrid membrane shows a hierarchical architecture of textile fibers (porous platform for fluid transport), ZrP nanoplatelets (layered scaffolds for chemical barriers), and octadecylamine (organic species for superhydrophobic functionalization). Interestingly, such a hybrid membrane is able to separate the oily wastewater with a high separation efficiency of 99.9%, even at in harsh environments. After being chemically etched, the hybrid membrane is able to restore its hydrophobicity autonomously and repeatedly, owing to the hierarchical structure that enables facile loading of healing agent. We anticipate that the concept of implanting superhydrophobic self-healing features in anisotropic structure of lyotropic nanoparticles will open up new opportunities for developing advanced multifunctional materials for wastewater treatment, fuel purification, and oil spill mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA