RESUMO
Identifying individuals with early-stage Alzheimer's disease (AD) at greater risk of steeper clinical decline would enable better-informed medical, support, and life planning decisions. Despite accumulating evidence on the clinical prognostic value of tau positron emission tomography (PET) in typical late-onset amnestic AD, its utility in predicting clinical decline in individuals with atypical forms of AD remains unclear. Across heterogeneous clinical phenotypes, patients with atypical AD consistently exhibit abnormal tau accumulation in the posterior nodes of the default mode network of the cerebral cortex. This evidence suggests that tau burden in this functional network could be a common imaging biomarker for prognostication across the syndromic spectrum of AD. Here, we examined the relationship between baseline tau PET signal and the rate of subsequent clinical decline in a sample of 48 A+/T+/N+ patients with mild cognitive impairment or mild dementia due to AD with atypical clinical phenotypes: Posterior Cortical Atrophy (n = 16), logopenic variant Primary Progressive Aphasia (n = 15), and amnestic syndrome with multi-domain impairment and young age of onset < 65 years (n = 17). All patients underwent magnetic resonance imaging (MRI), tau PET, and amyloid PET scans at baseline. Each patient's longitudinal clinical decline was assessed by calculating the annualized change in the Clinical Dementia Rating Sum-of-Boxes (CDR-SB) scores from baseline to follow-up (mean time interval = 14.55 ± 3.97 months). Atypical early AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per year: t(47) = 6.56, p < .001, Cohen's d = 0.95. Across clinical phenotypes, baseline tau in the default mode network was the strongest predictor of clinical decline (R2 = .30), outperforming a simpler model with baseline clinical impairment and demographic variables (R2 = .10), tau in other functional networks (R2 = .11-.26), and the magnitude of cortical atrophy (R2 = .20) and amyloid burden (R2 = .09) in the default mode network. Overall, these findings point to the contribution of default mode network tau to predicting the magnitude of clinical decline in atypical early AD patients one year later. This simple measure could aid the development of a personalized prognostic, monitoring, and treatment plan, which would help clinicians not only predict the natural evolution of the disease but also estimate the effect of disease-modifying therapies on slowing subsequent clinical decline given the patient's tau burden while still early in the disease course.
RESUMO
Posterior cortical atrophy (PCA), usually an atypical clinical syndrome of Alzheimer's disease, has well-characterized patterns of cortical atrophy and tau deposition that are distinct from typical amnestic presentations of Alzheimer's disease. However, the mechanisms underlying the cortical spread of tau in PCA remain unclear. Here, in a sample of 17 biomarker-confirmed (A+/T+/N+) individuals with PCA, we sought to identify functional networks with heightened vulnerability to tau pathology by examining the cortical distribution of elevated tau as measured by 18F-flortaucipir (FTP) PET. We then assessed the relationship between network-specific FTP uptake and visuospatial cognitive task performance. As predicted, we found consistent and prominent localization of tau pathology in the dorsal attention network and visual network of the cerebral cortex. Elevated FTP uptake within the dorsal attention network (particularly the ratio of FTP uptake between the anterior and posterior nodes) was associated with poorer visuospatial attention in PCA; associations were also identified in other functional networks, although to a weaker degree. Furthermore, using functional MRI data collected from each patient at wakeful rest, we found that a greater anterior-to-posterior ratio in FTP uptake was associated with stronger intrinsic functional connectivity between anterior and posterior nodes of the dorsal attention network. Taken together, we conclude that our cross-sectional marker of anterior-to-posterior FTP ratio could indicate tau propagation from posterior to anterior dorsal attention network nodes, and that this anterior progression occurs in relation to intrinsic functional connectivity within this network critical for visuospatial attention. Our findings help to clarify the spatiotemporal pattern of tau propagation in relation to visuospatial cognitive decline and highlight the key role of the dorsal attention network in the disease progression of PCA.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Estudos Transversais , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Atrofia/complicações , Proteínas tauRESUMO
INTRODUCTION: Magnetic resonance imaging (MRI) research has advanced our understanding of neurodegeneration in sporadic early-onset Alzheimer's disease (EOAD) but studies include small samples, mostly amnestic EOAD, and have not focused on developing an MRI biomarker. METHODS: We analyzed MRI scans to define the sporadic EOAD-signature atrophy in a small sample (n = 25) of Massachusetts General Hospital (MGH) EOAD patients, investigated its reproducibility in the large longitudinal early-onset Alzheimer's disease study (LEADS) sample (n = 211), and investigated the relationship of the magnitude of atrophy with cognitive impairment. RESULTS: The EOAD-signature atrophy was replicated across the two cohorts, with prominent atrophy in the caudal lateral temporal cortex, inferior parietal lobule, and posterior cingulate and precuneus cortices, and with relative sparing of the medial temporal lobe. The magnitude of EOAD-signature atrophy was associated with the severity of cognitive impairment. DISCUSSION: The EOAD-signature atrophy is a reliable and clinically valid biomarker of AD-related neurodegeneration that could be used in clinical trials for EOAD. HIGHLIGHTS: We developed an early-onset Alzheimer's disease (EOAD)-signature of atrophy based on magnetic resonance imaging (MRI) scans. EOAD signature was robustly reproducible across two independent patient cohorts. EOAD signature included prominent atrophy in parietal and posterior temporal cortex. The EOAD-signature atrophy was associated with the severity of cognitive impairment. EOAD signature is a reliable and clinically valid biomarker of neurodegeneration.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Reprodutibilidade dos Testes , Lobo Temporal/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , BiomarcadoresRESUMO
Background and Objectives: Posterior Cortical Atrophy (PCA) is a clinical syndrome characterized by progressive visuospatial and visuoperceptual impairment. As the neurodegenerative disease progresses, patients lose independent functioning due to the worsening of initial symptoms and development of symptoms in other cognitive domains. The timeline of clinical progression is variable across patients, and the field currently lacks robust methods for prognostication. Here, evaluated the utility of MRI-based cortical atrophy as a predictor of longitudinal clinical decline in a sample of PCA patients. Methods: PCA patients were recruited through the Massachusetts General Hospital Frontotemporal Disorders Unit PCA Program. All patients had cortical thickness estimates from baseline MRI scans, which were used to predict longitudinal change in clinical impairment assessed by the CDR Sum-of-Boxes (CDR-SB) score. Multivariable linear regression was used to estimate the magnitude of cortical atrophy in PCA patients relative to a group of amyloid-negative cognitively unimpaired participants. Linear mixed-effects models were used to test hypotheses about the utility of baseline cortical atrophy for predicting longitudinal clinical decline. Results: Data acquired from 34 PCA patients (mean age = 65.41 ± 7.90, 71% females) and 24 controls (mean age = 67.34 ± 4.93, 50% females) were analyzed. Sixty-two percent of the PCA patients were classified as having mild cognitive impairment (CDR 0.5) at baseline, with the rest having mild dementia (CDR 1). Each patient had at least one clinical follow-up, with the mean duration of 2.78 ± 1.62 years. Relative to controls, PCA patients showed prominent baseline atrophy in the posterior cortical regions, with the largest effect size observed in the visual network of the cerebral cortex. Cortical atrophy localized to the dorsal attention network, which supports higher-order visuospatial function, selectively predicted the rate of subsequent clinical decline. Discussion: These results demonstrate the utility of a snapshot measure of cortical atrophy of the dorsal attention network for predicting the rate of subsequent clinical decline in PCA. If replicated, this topographically-specific MRI-based biomarker could be useful as a clinical prognostication tool that facilitates personalized care planning.
RESUMO
Identifying individuals with early stage Alzheimer's disease (AD) at greater risk of steeper clinical decline would allow professionals and loved ones to make better-informed medical, support, and life planning decisions. Despite accumulating evidence on the clinical prognostic value of tau PET in typical late-onset amnestic AD, its utility in predicting clinical decline in individuals with atypical forms of AD remains unclear. In this study, we examined the relationship between baseline tau PET signal and the rate of subsequent clinical decline in a sample of 48 A+/T+/N+ patients with mild cognitive impairment or mild dementia due to AD with atypical clinical phenotypes (Posterior Cortical Atrophy, logopenic variant Primary Progressive Aphasia, and amnestic syndrome with multi-domain impairment and age of onset < 65 years). All patients underwent structural magnetic resonance imaging (MRI), tau (18F-Flortaucipir) PET, and amyloid (either 18F-Florbetaben or 11C-Pittsburgh Compound B) PET scans at baseline. Each patient's longitudinal clinical decline was assessed by calculating the annualized change in the Clinical Dementia Rating Sum-of-Boxes (CDR-SB) scores from baseline to follow-up (mean time interval = 14.55 ± 3.97 months). Our sample of early atypical AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per year: t(47) = 6.56, p < .001, d = 0.95. These AD patients showed prominent baseline tau burden in posterior cortical regions including the major nodes of the default mode network, including the angular gyrus, posterior cingulate cortex/precuneus, and lateral temporal cortex. Greater baseline tau in the broader default mode network predicted faster clinical decline. Tau in the default mode network was the strongest predictor of clinical decline, outperforming baseline clinical impairment, tau in other functional networks, and the magnitude of cortical atrophy and amyloid burden in the default mode network. Overall, these findings point to the contribution of baseline tau burden within the default mode network of the cerebral cortex to predicting the magnitude of clinical decline in a sample of atypical early AD patients one year later. This simple measure based on a tau PET scan could aid the development of a personalized prognostic, monitoring, and treatment plan tailored to each individual patient, which would help clinicians not only predict the natural evolution of the disease but also estimate the effect of disease-modifying therapies on slowing subsequent clinical decline given the patient's tau burden while still early in the disease course.
RESUMO
The temporal pole (TP) is considered one of the major paralimbic cortical regions, and is involved in a variety of functions such as sensory perception, emotion, semantic processing, and social cognition. Based on differences in cytoarchitecture, the TP can be further subdivided into smaller regions (dorsal, ventrolateral and ventromedial), each forming key nodes of distinct functional networks. However, the brain structural connectivity profile of TP subregions is not fully clarified. Using diffusion MRI data in a set of 31 healthy subjects, we aimed to elucidate the comprehensive structural connectivity of three cytoarchitectonically distinct TP subregions. Diffusion tensor imaging (DTI) analysis suggested that major association fiber pathways such as the inferior longitudinal, middle longitudinal, arcuate, and uncinate fasciculi provide structural connectivity to the TP. Further analysis suggested partially overlapping yet still distinct structural connectivity patterns across the TP subregions. Specifically, the dorsal subregion is strongly connected with wide areas in the parietal lobe, the ventrolateral subregion with areas including constituents of the default-semantic network, and the ventromedial subregion with limbic and paralimbic areas. Our results suggest the involvement of the TP in a set of extensive but distinct networks of cortical regions, consistent with its functional roles.
RESUMO
Alzheimer's disease-related atrophy in the posterior cingulate cortex, a key node of the default mode network, is present in the early stages of disease progression across clinical phenotypic variants of the disease. In the typical amnestic variant, posterior cingulate cortex neuropathology has been linked with disrupted connectivity of the posterior default mode network, but it remains unclear if this relationship is observed across atypical variants of Alzheimer's disease. In the present study, we first sought to determine if tau pathology is consistently present in the posterior cingulate cortex and other posterior nodes of the default mode network across the atypical Alzheimer's disease syndromic spectrum. Second, we examined functional connectivity disruptions within the default mode network and sought to determine if tau pathology is related to functional disconnection within this network. We studied a sample of 25 amyloid-positive atypical Alzheimer's disease participants examined with high-resolution MRI, tau (18F-AV-1451) PET, and resting-state functional MRI. In these patients, high levels of tau pathology in the posteromedial cortex and hypoconnectivity between temporal and parietal nodes of the default mode network were observed relative to healthy older controls. Furthermore, higher tau signal and reduced grey matter density in the posterior cingulate cortex and angular gyrus were associated with reduced parietal functional connectivity across individual patients, related to poorer cognitive scores. Our findings converge with what has been reported in amnestic Alzheimer's disease, and together these observations offer a unifying mechanistic feature that relates posterior cingulate cortex tau deposition to aberrant default mode network connectivity across heterogeneous clinical phenotypes of Alzheimer's disease.
RESUMO
In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.
Assuntos
Encéfalo/diagnóstico por imagem , Cognição , Esquizofrenia/diagnóstico por imagem , Psicologia do Esquizofrênico , Percepção Social , Substância Branca/diagnóstico por imagem , Doença Aguda , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurônios-Espelho , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Análise de Regressão , Esquizofrenia/tratamento farmacológico , Fatores Socioeconômicos , Adulto JovemRESUMO
BACKGROUND: 22q11.2 Deletion Syndrome (22q11DS) is considered to be a promising cohort to explore biomarkers of schizophrenia risk based on a 30 % probability of developing schizophrenia in adulthood. In this study, we investigated abnormalities in the microstructure of white matter in adolescents with 22q11DS and their specificity to prodromal symptoms of schizophrenia. METHODS: Diffusion Magnetic Resonance Imaging (dMRI) data were acquired from 50 subjects with 22q11DS (9 with and 41 without prodromal psychotic symptoms), and 47 matched healthy controls (mean age 18 +/-2 years). DMRI measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and compared between groups using the Tract Based Spatial Statistics (TBSS) method. Additionally, correlations between dMRI measures and scores on positive symptoms were performed. RESULTS: Reductions in MD, AD and RD (but not FA) were found in the corpus callosum (CC), left and right superior longitudinal fasciculus (SLF), and left and right corona radiata in the entire 22q11DS group. In addition, the 22q11DS subgroup with prodromal symptoms showed reductions in AD and MD, but no changes in RD when compared to the non-prodromal subgroup, in CC, right SLF, right corona radiata and right internal capsule. Finally, AD values in these tracts correlated with the scores on the psychosis subscale. CONCLUSION: Microstructural abnormalities in brain white matter are present in adolescent subjects with prodromal psychotic symptoms.
Assuntos
Encéfalo/diagnóstico por imagem , Síndrome de DiGeorge/diagnóstico por imagem , Síndrome de DiGeorge/psicologia , Transtornos Psicóticos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Encéfalo/patologia , Estudos de Coortes , Síndrome de DiGeorge/tratamento farmacológico , Síndrome de DiGeorge/patologia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Sintomas Prodrômicos , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Substância Branca/patologia , Adulto JovemRESUMO
UNLABELLED: Brain masking of MRI images separates brain from surrounding tissue and its accuracy is important for further imaging analyses. We implemented a new brain masking technique based on multi-atlas brain segmentation (MABS) and compared MABS to masks generated using FreeSurfer (FS; version 5.3), Brain Extraction Tool (BET), and Brainwash, using manually defined masks (MM) as the gold standard. We further determined the effect of different masking techniques on cortical and subcortical volumes generated by FreeSurfer. METHODS: Images were acquired on a 3-Tesla MR Echospeed system General Electric scanner on five control and five schizophrenia subjects matched on age, sex, and IQ. Automated masks were generated from MABS, FS, BET, and Brainwash, and compared to MM using these metrics: a) volume difference from MM; b) Dice coefficients; and c) intraclass correlation coefficients. RESULTS: Mean volume difference between MM and MABS masks was significantly less than the difference between MM and FS or BET masks. Dice coefficient between MM and MABS was significantly higher than Dice coefficients between MM and FS, BET, or Brainwash. For subcortical and left cortical regions, MABS volumes were closer to MM volumes than were BET or FS volumes. For right cortical regions, MABS volumes were closer to MM volumes than were BET volumes. CONCLUSIONS: Brain masks generated using FreeSurfer, BET, and Brainwash are rapidly obtained, but are less accurate than manually defined masks. Masks generated using MABS, in contrast, resemble more closely the gold standard of manual masking, thereby offering a rapid and viable alternative.
Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Adolescente , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-IdadeRESUMO
The purpose of this study is to examine the relation between the microstructural architecture of white matter, as measured by diffusion tensor imaging (DTI), and postconcussion symptom reporting 6-8 weeks following mild traumatic brain injury (MTBI). Participants were 108 patients prospectively recruited from a Level 1 Trauma Center (Vancouver, BC, Canada) following an orthopedic injury [i.e., 36 trauma controls (TCs)] or MTBI (n = 72). DTI of the whole brain was undertaken using a Phillips 3T scanner at 6-8 weeks postinjury. Participants also completed a 5 h neurocognitive test battery and a brief battery of self-report measures (e.g., depression, anxiety, and postconcussion symptoms). The MTBI sample was divided into two groups based on ICD-10 criteria for postconcussional syndrome (PCS): first, PCS-present (n = 20) and second, PCS-absent (n = 52). There were no significant differences across the three groups (i.e., TC, PCS-present, and PCS-absent) for any of the neurocognitive measures (p = .138-.810). For the self-report measures, the PCS-present group reported significantly more anxiety and depression symptoms compared with the PCS-absent and TC groups (p < .001, d = 1.63-1.89, very large effect sizes). For the DTI measures, there were no significant differences in fractional anisotropy, axial diffusivity, radial diffusivity, or mean diffusivity when comparing the PCS-present and PCS-absent groups. However, there were significant differences (p < .05) in MD and RD when comparing the PCS-present and TC groups. There were significant differences in white matter between TC subjects and the PCS-present MTBI group, but not the PCS-absent MTBI group. Within the MTBI group, white-matter changes were not a significant predictor of ICD-10 PCS.
Assuntos
Lesões Encefálicas/complicações , Encéfalo/patologia , Imagem de Tensor de Difusão , Síndrome Pós-Concussão/diagnóstico , Síndrome Pós-Concussão/etiologia , Adulto , Ansiedade/diagnóstico , Ansiedade/etiologia , Depressão/diagnóstico , Depressão/etiologia , Feminino , Seguimentos , Escala de Coma de Glasgow , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Estudos Retrospectivos , Autorrelato , Substância Branca/patologia , Adulto JovemRESUMO
This study examined whether intracranial neuroimaging abnormalities in those with mild traumatic brain injury (MTBI) (i.e., "complicated" MTBIs) are associated with worse subacute outcomes as measured by cognitive testing, symptom ratings, and/or diffusion tensor imaging (DTI). We hypothesized that (i) as a group, participants with complicated MTBIs would report greater symptoms and have worse neurocognitive outcomes than those with uncomplicated MTBI, and (ii) as a group, participants with complicated MTBIs would show more Diffusion Tensor Imaging (DTI) abnormalities. Participants were 62 adults with MTBIs (31 complicated and 31 uncomplicated) who completed neurocognitive testing, symptom ratings, and DTI on a 3T MRI scanner approximately 6-8 weeks post injury. There were no statistically significant differences between groups on symptom ratings or on a broad range of neuropsychological tests. When comparing the groups using tract-based spatial statistics for DTI, no significant difference was found for axial diffusivity or mean diffusivity. However, several brain regions demonstrated increased radial diffusivity (purported to measure myelin integrity), and decreased fractional anisotropy in the complicated group compared with the uncomplicated group. Finally, when we extended the DTI analysis, using a multivariate atlas based approach, to 32 orthopedic trauma controls (TC), the findings did not reveal significantly more areas of abnormal DTI signal in the complicated vs. uncomplicated groups, although both MTBI groups had a greater number of areas with increased radial diffusivity compared with the trauma controls. This study illustrates that macrostructural neuroimaging changes following MTBI are associated with measurable changes in DTI signal. Of note, however, the division of MTBI into complicated and uncomplicated subtypes did not predict worse clinical outcome at 6-8 weeks post injury.
Assuntos
Lesões Encefálicas/diagnóstico , Encéfalo/fisiopatologia , Transtornos Cognitivos/diagnóstico , Síndrome Pós-Concussão/diagnóstico , Adulto , Anisotropia , Encéfalo/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Mapeamento Encefálico , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Síndrome Pós-Concussão/patologia , Síndrome Pós-Concussão/fisiopatologiaRESUMO
OBJECTIVES: The interhemispheric auditory pathway has been shown to play a crucial role in the processing of acoustic stimuli, and alterations of structural and functional connectivity between bilateral auditory areas are likely relevant to the pathogenesis of auditory verbal hallucinations (AVHs). The aim of this study was to examine this pathway in patients with chronic schizophrenia regarding their lifetime history of AVHs. METHODS: DTI scans were acquired from 33 healthy controls (HC), 24 schizophrenia patients with a history of AVHs (LT-AVH) and nine schizophrenia patients without any lifetime hallucinations (N-LT-AVH). The interhemispheric auditory fibre bundles were extracted using streamline tractography. Subsequently, diffusivity indices, namely Fractional Anisotropy (FA), Trace, Mode, Axial and Radial diffusivity, were calculated. RESULTS: FA was decreased over the entire pathway in LT-AVH compared with N-LT-AVH. Moreover, LT-AVH displayed decreased FA and Mode as well as increased radial diffusivity in the midsagittal section of the fibre tract. CONCLUSIONS: These findings indicate complex microstructural changes in the interhemispheric auditory pathway of schizophrenia patients with a history of AVHs. Alterations appear to be absent in patients who have never hallucinated.
Assuntos
Córtex Auditivo/fisiopatologia , Vias Auditivas/fisiologia , Alucinações/fisiopatologia , Esquizofrenia/fisiopatologia , Estimulação Acústica , Adulto , Anisotropia , Mapeamento Encefálico , Estudos de Casos e Controles , Doença Crônica , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
Subcaudate tractotomy (SCT) is a neurosurgical lesioning procedure that can reduce symptoms in medically intractable obsessive compulsive disorder (OCD). Due to the putative importance of the orbitofrontal cortex (OFC) in symptomatology, fibers that connect the OFC, SCT lesion, and either the thalamus or brainstem were investigated with two-tensor tractography using an unscented Kalman filter approach. From this dataset, fibers were warped to Montreal Neurological Institute space, and probability maps with center-of-mass analysis were subsequently generated. In comparing fibers from the same OFC region, including medial OFC (mOFC), central OFC (cOFC), and lateral OFC (lOFC), the area of divergence for fibers connected with the thalamus versus the brainstem is posterior to the anterior commissure. At the anterior commissure, fibers connected with the thalamus run dorsal to those connected with the brainstem. As OFC fibers travel through the ventral aspect of the internal capsule, lOFC fibers are dorsal to cOFC and mOFC fibers. Using neuroanatomical comparison, tracts coursing between the OFC and thalamus are likely part of the anterior thalamic radiations, while those between the OFC and brainstem likely belong to the medial forebrain bundle. These data support the involvement of the OFC in OCD and may be relevant to creating differential lesional procedures of specific tracts or to developing deep brain stimulation programming paradigms.
Assuntos
Transtorno Obsessivo-Compulsivo/patologia , Transtorno Obsessivo-Compulsivo/cirurgia , Córtex Pré-Frontal/patologia , Adulto , Tronco Encefálico/patologia , Imagem de Tensor de Difusão , Humanos , Imageamento Tridimensional , Vias Neurais/patologia , Vias Neurais/cirurgia , Procedimentos Neurocirúrgicos/efeitos adversos , Tálamo/patologia , Substância Branca/patologia , Substância Branca/cirurgiaRESUMO
INTRODUCTION: The medial orbitofrontal cortex (mOFC) and rostral part of the anterior cingulate cortex (rACC) are brain regions that are important in the neural network involving emotional processing and decision making, as well as playing an important role in social behavior and interaction. Considering the schizophrenia dysconnectivity hypothesis, observed abnormalities in emotional response and social behavior in schizophrenia might be associated with connectivity abnormalities between mOFC and rACC. METHODS: Twenty-seven patients with chronic schizophrenia and 26 healthy controls were examined using diffusion tensor imaging (DTI). White matter properties in bilateral mOFC-rACC connections were examined using stochastic tractography, which has been shown to be among the most effective DTI methods for examining tracts between adjacent gray matter regions. RESULTS: Reductions in fractional anisotropy (FA) were observed in left anterior mOFC-rACC connections (p<0.0001), and bilateral posterior mOFC-rACC connections (left: p<0.0001; right: p<0.0001) in patients compared to controls. In addition, reduced FA in left posterior mOFC-rACC connections was associated with more severe anhedonia-asociality (R=-0.396, p=0.041) and avolition-apathy (R=-0.426, p=0.027) using the Scale for the Assessment of Negative Symptoms. DISCUSSION: White matter abnormalities within connections between mOFC and rACC are associated with more severe anhedonia-asociality and avolition-apathy, which suggest that these brain regions may be important in understanding abnormal emotional responses and social behavior in patients with schizophrenia.
Assuntos
Giro do Cíngulo/patologia , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Substância Branca/patologia , Adulto , Anedonia , Anisotropia , Doença Crônica , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Lateralidade Funcional , Substância Cinzenta/patologia , Humanos , Masculino , Fibras Nervosas Mielinizadas/patologia , Vias Neurais/patologia , Escalas de Graduação Psiquiátrica , Esquizofrenia/tratamento farmacológicoRESUMO
CNTNAP2 is a gene on chromosome 7 that has shown associations with autism and schizophrenia, and there is evidence that it plays an important role for neuronal synchronization and brain connectivity. In this study, we assessed the relationship between Diffusion Tensor Imaging (DTI), a putative marker of anatomical brain connectivity, and multiple single nucleotide polymorphisms (SNPs) spread out over this large gene. 81 healthy controls and 44 patients with schizophrenia (all Caucasian) underwent DTI and genotyping of 31 SNPs within CNTNAP2. We employed Tract-based Spatial Statistics (TBSS) for inter-subject brain registration and computed average diffusivity values for six major white matter tracts. Analyses of Covariance (ANCOVAs) were computed to test for possible associations with genotypes. The strongest association, which survived rigorous Bonferroni correction, was between rs2710126 genotype and Fractional Anisotropy (FA) in the uncinate fasciculus (p = .00003). This anatomical location is particularly interesting given the enriched fronto-temporal expression of CNTNAP2 in the developing brain. For this SNP, no phenotype association has been reported before. There were several further genotype-DTI associations that were nominally significant but did not survive Bonferroni correction, including an association between axial diffusivity in the dorsal cingulum bundle and a region in intron 13 (represented by rs2710102, rs759178, rs2538991), which has previously been reported to be associated with anterior-posterior functional connectivity. We present new evidence about the effects of CNTNAP2 on brain connectivity, whose disruption has been hypothesized to be central to schizophrenia pathophysiology.