Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 96(2): 389-403, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044014

RESUMO

Cryptochrome (cry) blue light photoreceptors have important roles in the regulation of plant development. Their photocycle includes redox changes of their flavin adenine dinucleotide (FAD) chromophore, which is fully oxidised in the dark state and semi-reduced in the signalling-active lit state. The two Arabidopsis thaliana cryptochromes, cry1 and cry2, and the plant-type cryptochrome CPH1 from Chlamydomonas rheinhardtii bind ATP and other nucleotides. Binding of ATP affects the photocycle of these photoreceptors and causes structural alterations. However, the exact regions that undergo structural changes have not been defined, and most importantly it is not known whether ATP binding affects the biological activity of these photoreceptors in planta. Here we present studies on the effect of ATP on Arabidopsis cry2. Recombinant cry2 protein showed a high affinity for ATP (KD of 1.09 ± 0.48 µm). Binding of ATP and other adenines promoted photoreduction of the FAD chromophore in vitro and caused structural changes, particularly in α-helix 21 which links the photosensory domain with the C-terminal extension. The constructed cry2Y399A mutant was unable to bind ATP and did not show enhancement of photoreduction by ATP. When this mutant gene was expressed in Arabidopsis null cry2 mutant plants it retained some biological activity, which was, however, lower than that of the wild type. Our results indicate that binding of ATP to cry2, and most likely to other plant-type cryptochromes, is not essential but boosts the formation of the signalling state and biological activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Criptocromos/genética , Luz , Oxirredução , Proteínas Recombinantes
2.
Planta ; 251(1): 33, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832774

RESUMO

MAIN CONCLUSION: The cryptochrome photoreceptor mutant cry2I404F exhibits hyperactivity in the dark, hypersensitivity in different light conditions, and in contrast to the wild-type protein, its flavin chromophore is reducible even in the absence of light. Plant cryptochromes (cry) are blue-light photoreceptors involved in multiple signaling pathways and various photomorphogenic responses. One biologically hyperactive mutant of a plant cryptochrome that was previously characterized is Arabidopsis cry1L407F (Exner et al. in Plant Physiol 154:1633-1645, 2010). Protein sequence alignments of different cryptochromes revealed that L407 in cry1 corresponds to I404 in cry2. Point mutation of Ile to Phe in cry2 in this position created a novel mutant. The present study provided a baseline data on the elucidation of the properties of cry2I404F. This mutant was still able to bind ATP-triggering conformational changes, as confirmed by partial tryptic digestion and thermo-FAD assays. Surprisingly, the FAD cofactor of cry2I404F was reduced by the addition of reductant even in the absence of light. In vivo, cry2I404F exhibited a cop phenotype in the dark and hypersensitivity to various light conditions compared to cry2 wild type. Overall, these data suggest that the hypersensitivity to red and blue light and hyperactivity of this novel mutant in the dark can be mostly accounted to structural alterations brought forth by the Ile to Phe mutation at position 404 that allows reduction of the flavin chromophore even in the absence of light.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Flavinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efeitos da radiação , Criptocromos/química , Criptocromos/efeitos da radiação , Luz , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Conformação Proteica , Transdução de Sinais , Fatores de Transcrição/genética
3.
Proc Natl Acad Sci U S A ; 112(49): 15130-5, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26578805

RESUMO

DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B-induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent manner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fungi.


Assuntos
Criptocromos/fisiologia , Reparo do DNA/fisiologia , Evolução Molecular , Phycomyces/metabolismo , Criptocromos/genética , Genes Fúngicos , Phycomyces/genética , Dímeros de Pirimidina
4.
Sci Rep ; 8(1): 16120, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382124

RESUMO

Breeding vegetative crops (e.g. beets, cabbage, forage grasses) is challenged by two conflicting aims. For field production, flowering must be avoided while flowering and seed set is necessary for breeding and seed production. The biennial species sugar beet makes shoot elongation ('bolting') followed by flowering after a long period of cold temperatures. Field production in northern geographical regions starts in spring. A thickened storage root is formed only during vegetative growth. It is expected that winter beets, which are sown before winter would have a much higher yield potential. However, field production was not possible so far due to bolting after winter. We propose a strategy to breed winter beets exploiting haplotype variation at two major bolting time loci, B and B2. Both genes encode transcription factors controlling the expression of two orthologs of the Arabidopsis gene FLOWERING LOCUS T (FT). We detected an epistatic interaction between both genes because F2 plants homozygous for two B/B2 mutant alleles did not bolt even after vernalization. Fluorescence complementation studies revealed that both proteins form a heterodimer in vivo. In non-bolting plants, the bolting activator BvFT2 was completely downregulated whereas the repressor BvFT1 was upregulated which suggests that both genes acquire a CONSTANS (CO) like function in beet. Like CO, B and B2 proteins house CCT and BBX domains which, in contrast to CO are split between the two beet genes. We propose an alternative regulation of FT orthologs in beet that can be exploited to breed winter beets.


Assuntos
Beta vulgaris/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Temperatura Baixa , Produtos Agrícolas , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA