Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(7): 4158-4173, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28003477

RESUMO

Argonaute (Ago) proteins associate with microRNAs (miRNAs) to form the core of the RNA-induced silencing complex (RISC) that mediates post-transcriptional gene silencing of target mRNAs. As key players in anti-viral defense, Ago proteins are thought to have the ability to interact with human immunodeficiency virus type 1 (HIV-1) RNA. However, the role of this interaction in regulating HIV-1 replication has been debated. Here, we used high throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to explore the interaction between Ago2 and HIV-1 RNA in infected cells. By only considering reads of 50 nucleotides length in our analysis, we identified more than 30 distinct binding sites for Ago2 along the viral RNA genome. Using reporter assays, we found four binding sites, located near splice donor sites, capable of repressing Luciferase gene expression in an Ago-dependent manner. Furthermore, inhibition of Ago1 and Ago2 levels in cells expressing HIV-1 led to an increase of viral multiply spliced transcripts and to a strong reduction in the extracellular CAp24 level. Depletion of Dicer did not affect these activities. Our results highlight a new role of Ago proteins in the control of multiply spliced HIV-1 transcript levels and viral production, independently of the miRNA pathway.


Assuntos
Processamento Alternativo , Proteínas Argonautas/metabolismo , HIV-1/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Genoma Viral , Células HEK293 , HIV-1/fisiologia , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Células Jurkat , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Viral/química , Ribonuclease III/metabolismo , Análise de Sequência de RNA , Vírion/fisiologia
2.
Mol Ther Nucleic Acids ; 1: e31, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23344083

RESUMO

Many genetic diseases are induced by mutations disturbing the maturation of pre-mRNAs, often affecting splicing. Antisense oligoribonucleotides (AONs) have been used to modulate splicing thereby circumventing the deleterious effects of mutations. Stable delivery of antisense sequences is achieved by linking them to small nuclear RNA (snRNAs) delivered by viral vectors, as illustrated by studies where therapeutic exon skipping was obtained in animal models of Duchenne muscular dystrophy (DMD). Yet, clinical translation of these approaches is limited by the amounts of vector to be administered. In this respect, maximizing the amount of snRNA antisense shuttle delivered by the vector is essential. Here, we have used a muscle- and heart-specific enhancer (MHCK) to drive the expression of U7 snRNA shuttles carrying antisense sequences against the human or murine DMD pre-mRNAs. Although antisense delivery and subsequent exon skipping were improved both in tissue culture and in vivo, we observed the formation of additional U7 snRNA by-products following gene transfer. These included aberrantly 3' processed as well as unprocessed species that may arise because of the saturation of the cellular processing capacity. Future efforts to increase the amounts of functional U7 shuttles delivered into a cell will have to take this limitation into account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA