RESUMO
OBJECTIVE: Through its location on nociceptors, acid-sensing ion channel 3 (ASIC-3) is activated by decreases in pH and plays a significant role in musculoskeletal pain. We recently showed that decreases in pH activate ASIC-3 located on fibroblast-like synoviocytes (FLS), which are key cells in the inflammatory process. The purpose of this study was to test whether ASIC-3-deficient mice with arthritis have altered inflammation and pain relative to controls. METHODS: Collagen antibody-induced arthritis (CAIA) was generated by injection of an anti-type II collagen antibody cocktail. Inflammation and pain parameters in ASIC-3(-/-) and ASIC-3(+/+) mice were assessed. Disease severity was assessed by determining clinical arthritis scores, measuring joint diameters, analyzing joint histology, and assessing synovial gene expression by quantitative polymerase chain reaction analysis. Cell death was assessed with a Live/Dead assay of FLS in response to decreases in pH. Pain behaviors in the mice were measured by examining withdrawal thresholds in the joints and paws and by measuring their physical activity levels. RESULTS: Surprisingly, ASIC-3(-/-) mice with CAIA demonstrated significantly increased joint inflammation, joint destruction, and expression of interleukin-6 (IL-6), matrix metalloproteinase 3 (MMP-3), and MMP-13 in joint tissue as compared to ASIC-3(+/+) mice. ASIC-3(+/+) FLS showed enhanced cell death when exposed to pH 6.0 in the presence of IL-1ß, which was abolished in ASIC-3(-/-) FLS. Despite enhanced disease severity, ASIC-3(-/-) mice did not develop mechanical hypersensitivity of the paw and showed greater levels of physical activity. CONCLUSION: Our findings are consistent with the hypothesis that ASIC-3 plays a protective role in the inflammatory arthritides by limiting inflammation through enhanced synoviocyte cell death, which reduces disease severity, and through the production of pain, which reduces joint use.
Assuntos
Canais Iônicos Sensíveis a Ácido/deficiência , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Dor/patologia , Sinovite/patologia , Animais , Artrite Experimental/complicações , Artrite Experimental/fisiopatologia , Artrite Reumatoide/complicações , Artrite Reumatoide/fisiopatologia , Comportamento Animal , Morte Celular , Sobrevivência Celular , Feminino , Expressão Gênica , Membro Posterior , Hiperalgesia , Interleucina-6/genética , Interleucina-6/metabolismo , Articulações/metabolismo , Articulações/patologia , Articulações/fisiopatologia , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/etiologia , Dor/fisiopatologia , Medição da Dor , Limiar da Dor , Índice de Gravidade de Doença , Sinovite/etiologia , Sinovite/fisiopatologiaRESUMO
Human colonic neuromuscular functions decline among the elderly. The aim was to explore the involvement of senescence. A preliminary PCR study looked for age-dependent differences in expression of CDKN1A (encoding the senescence-related p21 protein) and CDKN2A (encoding p16 and p14) in human ascending and descending colon (without mucosa) from 39 (approximately 50: 50 male: female) adult (aged 27-60 years) and elderly donors (70-89 years). Other genes from different aging pathways (e.g., inflammation, oxidative stress, autophagy) and cell-types (e.g., neurons, neuron axonal transport) were also examined. Unlike CDKN1A, CDKN2A (using primers for p16 and p14 but not when using p14-specific primers) was upregulated in both regions of colon. Compared with the number of genes appearing to upregulate in association with temporal age, more genes positively associated with increased CDKN2A expression (respectively, 16 and five of 44 genes studied for ascending and descending colon). Confirmation of increased expression of CDKN2A was sought by immunostaining for p16 in the myenteric plexus of colon from 52 patients, using a semi-automated software protocol. The results showed increased staining not within the glial cells (S100 stained), but in the cytoplasm of myenteric nerve cell bodies (MAP2 stained, with identified nucleus) of ascending, but not descending colon of the elderly, and not in the cell nucleus of either region or age group (5,710 neurons analyzed: n = 12-14 for each group). It was concluded that increased p16 staining within the cytoplasm of myenteric nerve cell bodies of elderly ascending (but not descending) colon, suggests a region-dependent, post-mitotic cellular senescence-like activity, perhaps involved with aging of enteric neurons within the colon.