Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 52(4): 2066-2077, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38180814

RESUMO

Limiting the spread of synthetic genetic information outside of the intended use is essential for applications where biocontainment is critical. In particular, biocontainment of engineered probiotics and plasmids that are excreted from the mammalian gastrointestinal tract is needed to prevent escape and acquisition of genetic material that could confer a selective advantage to microbial communities. Here, we built a simple and lightweight biocontainment system that post-translationally activates a site-specific DNA endonuclease to degrade DNA at 18°C and not at higher temperatures. We constructed an orthogonal set of temperature-sensitive meganucleases (TSMs) by inserting the yeast VMA1 L212P temperature-sensitive intein into the coding regions of LAGLIDADG homing endonucleases. We showed that the TSMs eliminated plasmids carrying the cognate TSM target site from laboratory strains of Escherichia coli at the permissive 18°C but not at higher restrictive temperatures. Plasmid elimination is dependent on both TSM endonuclease activity and intein splicing. TSMs eliminated plasmids from E. coli Nissle 1917 after passage through the mouse gut when fecal resuspensions were incubated at 18°C but not at 37°C. Collectively, our data demonstrates the potential of thermoregulated meganucleases as a means of restricting engineered plasmids and probiotics to the mammalian gut.


Assuntos
Inteínas , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Inteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Processamento de Proteína , DNA/metabolismo , Saccharomyces cerevisiae/genética , Plasmídeos/genética , Mamíferos/genética , ATPases Translocadoras de Prótons , Proteínas de Saccharomyces cerevisiae/genética
2.
Nucleic Acids Res ; 51(2): 982-996, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629257

RESUMO

The ability to restrict gene expression to a relevant bacterial species in a complex microbiome is an unsolved problem. In the context of the human microbiome, one desirable target metabolic activity are glucuronide-utilization enzymes (GUS) that are implicated in the toxic re-activation of glucuronidated compounds in the human gastrointestinal (GI) tract, including the chemotherapeutic drug irinotecan. Here, we take advantage of the variable distribution of GUS enzymes in bacteria as a means to distinguish between bacteria with GUS activity, and re-purpose the glucuronide-responsive GusR transcription factor as a biosensor to regulate dCas9 expression in response to glucuronide inducers. We fused the Escherichia coli gusA regulatory region to the dCas9 gene to create pGreg-dCas9, and showed that dCas9 expression is induced by glucuronides, but not other carbon sources. When conjugated from E. coli to Gammaproteobacteria derived from human stool, dCas9 expression from pGreg-dCas9 was restricted to GUS-positive bacteria. dCas9-sgRNAs targeted to gusA specifically down-regulated gus operon transcription in Gammaproteobacteria, with a resulting ∼100-fold decrease in GusA activity. Our data outline a general strategy to re-purpose bacterial transcription factors responsive to exogenous metabolites for precise ligand-dependent expression of genetic tools such as dCas9 in diverse bacterial species.


Assuntos
Bactérias , Proteína 9 Associada à CRISPR , Glucuronídeos , Óperon , Humanos , Bactérias/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Regulação da Expressão Gênica , Glucuronídeos/metabolismo , Fatores de Transcrição/genética , Proteína 9 Associada à CRISPR/genética
3.
Nucleic Acids Res ; 47(20): 10830-10841, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31602462

RESUMO

Identifying and validating intermolecular covariation between proteins and their DNA-binding sites can provide insights into mechanisms that regulate selectivity and starting points for engineering new specificity. LAGLIDADG homing endonucleases (meganucleases) can be engineered to bind non-native target sites for gene-editing applications, but not all redesigns successfully reprogram specificity. To gain a global overview of residues that influence meganuclease specificity, we used information theory to identify protein-DNA covariation. Directed evolution experiments of one predicted pair, 227/+3, revealed variants with surprising shifts in I-OnuI substrate preference at the central 4 bases where cleavage occurs. Structural studies showed significant remodeling distant from the covarying position, including restructuring of an inter-hairpin loop, DNA distortions near the scissile phosphates, and new base-specific contacts. Our findings are consistent with a model whereby the functional impacts of covariation can be indirectly propagated to neighboring residues outside of direct contact range, allowing meganucleases to adapt to target site variation and indirectly expand the sequence space accessible for cleavage. We suggest that some engineered meganucleases may have unexpected cleavage profiles that were not rationally incorporated during the design process.


Assuntos
DNA/metabolismo , Endonucleases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , DNA/química , Endonucleases/química , Evolução Molecular , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Especificidade por Substrato
4.
PLoS Genet ; 14(1): e1007159, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357354

RESUMO

Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.


Assuntos
Aminoácidos de Cadeia Ramificada/biossíntese , Proteínas de Bactérias/fisiologia , Isoleucina/fisiologia , Proteínas Repressoras/fisiologia , Staphylococcus aureus/metabolismo , Adaptação Biológica/genética , Regulação para Baixo/genética , Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Leucina/química , Redes e Vias Metabólicas/genética , Organismos Geneticamente Modificados , Proteínas Repressoras/química , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência/genética
5.
Nucleic Acids Res ; 46(22): 11990-12007, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357419

RESUMO

LAGLIDADG homing endonucleases (meganucleases) are site-specific mobile endonucleases that can be adapted for genome-editing applications. However, one problem when reprogramming meganucleases on non-native substrates is indirect readout of DNA shape and flexibility at the central 4 bases where cleavage occurs. To understand how the meganuclease active site regulates DNA cleavage, we used functional selections and deep sequencing to profile the fitness landscape of 1600 I-LtrI and I-OnuI active site variants individually challenged with 67 substrates with central 4 base substitutions. The wild-type active site was not optimal for cleavage on many substrates, including the native I-LtrI and I-OnuI targets. Novel combinations of active site residues not observed in known meganucleases supported activity on substrates poorly cleaved by the wild-type enzymes. Strikingly, combinations of E or D substitutions in the two metal-binding residues greatly influenced cleavage activity, and E184D variants had a broadened cleavage profile. Analyses of I-LtrI E184D and the wild-type proteins co-crystallized with the non-cognate AACC central 4 sequence revealed structural differences that correlated with kinetic constants for cleavage of individual DNA strands. Optimizing meganuclease active sites to enhance cleavage of non-native central 4 target sites is a straightforward addition to engineering workflows that will expand genome-editing applications.


Assuntos
DNA/química , Endonucleases/química , Engenharia de Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Clivagem do DNA , Endonucleases/genética , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 113(52): 14988-14993, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956611

RESUMO

The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.


Assuntos
Sistemas CRISPR-Cas , Endodesoxirribonucleases/genética , Deleção de Genes , Edição de Genes , Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA , Endopeptidase K/química , Escherichia coli , Genoma , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/genética , Análise de Sequência de DNA , Deleção de Sequência
7.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640164

RESUMO

Conjugation is a bacterial mechanism for DNA transfer from a donor cell to a wide range of recipients, including both prokaryotic and eukaryotic cells. In contrast to conventional DNA delivery techniques, such as electroporation and chemical transformation, conjugation eliminates the need for DNA extraction, thereby preventing DNA damage during isolation. While most established conjugation protocols allow for DNA transfer in liquid media or on a solid surface, we developed a procedure for conjugation within solid media. Such a protocol may expand conjugation as a tool for DNA transfer to species that require semi-solid or solid media for growth. Conjugation within solid media could also provide a more stable microenvironment in which the conjugative pilus can establish and maintain contact with recipient cells for the successful delivery of plasmid DNA. Furthermore, transfer in solid media may enhance the ability to transfer plasmids and chromosomes greater than 100 kbp. Using our optimized method, plasmids of varying sizes were tested for transfer from Escherichia coli to Saccharomyces cerevisiae. We demonstrated that there was no significant change in conjugation frequency when plasmid size increased from 56.5 to 138.6 kbp in length. Finally, we established an efficient PCR-based synthesis protocol to generate custom conjugative plasmids.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Plasmídeos/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Conjugação Genética , Meios de Cultura/química , Escherichia coli/genética , Tamanho do Genoma , Saccharomyces cerevisiae/genética
8.
Nucleic Acids Res ; 44(15): 7350-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27387281

RESUMO

Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites.


Assuntos
Substituição de Aminoácidos/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Mutação , Clivagem do DNA , Evolução Molecular Direcionada , Endodesoxirribonucleases/química , Íntrons/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos/genética , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Proc Natl Acad Sci U S A ; 111(23): E2376-83, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912189

RESUMO

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs). Distinct combinations of the four residues in the network map to distinct LHE subfamilies, with a striking distribution of the metal-binding Asp (D) and Glu (E) residues. Mutation of these four positions in three LHEs--I-LtrI, I-OnuI, and I-HjeMI--indicate that the combinations of residues tolerated are specific to each enzyme. Kinetic analyses under single-turnover conditions revealed that I-LtrI activity could be modulated over an ∼100-fold range by mutation of residues in the coevolving network. I-LtrI catalytic site variants with low activity could be rescued by compensatory mutations at adjacent noncatalytic sites that restore an optimal coevolving network and vice versa. Our results demonstrate that LHE activity is constrained by an evolutionary barrier of residues with strong context-dependent effects. Creation of optimal coevolving active-site networks is therefore an important consideration in engineering of LHEs and other enzymes.


Assuntos
Domínio Catalítico/genética , Endonucleases/genética , Evolução Molecular , Mutação , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sítios de Ligação/genética , Biocatálise , Endonucleases/química , Endonucleases/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Modelos Genéticos , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína
10.
Int J Mol Sci ; 18(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186020

RESUMO

Breakthroughs in the development of programmable site-specific nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases (MNs), and most recently, the clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (including Cas9) have greatly enabled and accelerated genome editing. By targeting double-strand breaks to user-defined locations, the rates of DNA repair events are greatly enhanced relative to un-catalyzed events at the same sites. However, the underlying biology of each genome-editing nuclease influences the targeting potential, the spectrum of off-target cleavages, the ease-of-use, and the types of recombination events at targeted double-strand breaks. No single genome-editing nuclease is optimized for all possible applications. Here, we focus on the diversity of nuclease domains available for genome editing, highlighting biochemical properties and the potential applications that are best suited to each domain.


Assuntos
Sistemas CRISPR-Cas/genética , Animais , Sistemas CRISPR-Cas/fisiologia , Endonucleases/genética , Edição de Genes , Humanos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
11.
Nucleic Acids Res ; 42(13): 8816-29, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25013171

RESUMO

Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications.


Assuntos
Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Deleção de Sequência , Domínio Catalítico , Quebras de DNA de Cadeia Dupla , Clivagem do DNA , Reparo do DNA , Endodesoxirribonucleases/genética , Engenharia Genética , Células HEK293 , Humanos , Mutagênese , Motivos de Nucleotídeos , Proteínas Recombinantes de Fusão/metabolismo
12.
Nucleic Acids Res ; 41(10): 5413-27, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23558745

RESUMO

The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.


Assuntos
Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Simples , Clivagem do DNA , Endodesoxirribonucleases/química , Estrutura Terciária de Proteína
13.
Proc Natl Acad Sci U S A ; 109(21): 8061-6, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566637

RESUMO

Targeted manipulation of complex genomes often requires the introduction of a double-strand break at defined locations by site-specific DNA endonucleases. Here, we describe a monomeric nuclease domain derived from GIY-YIG homing endonucleases for genome-editing applications. Fusion of the GIY-YIG nuclease domain to three-member zinc-finger DNA binding domains generated chimeric GIY-zinc finger endonucleases (GIY-ZFEs). Significantly, the I-TevI-derived fusions (Tev-ZFEs) function in vitro as monomers to introduce a double-strand break, and discriminate in vitro and in bacterial and yeast assays against substrates lacking a preferred 5'-CNNNG-3' cleavage motif. The Tev-ZFEs function to induce recombination in a yeast-based assay with activity on par with a homodimeric Zif268 zinc-finger nuclease. We also fused the I-TevI nuclease domain to a catalytically inactive LADGLIDADG homing endonuclease (LHE) scaffold. The monomeric Tev-LHEs are active in vivo and similarly discriminate against substrates lacking the 5'-CNNNG-3' motif. The monomeric Tev-ZFEs and Tev-LHEs are distinct from the FokI-derived zinc-finger nuclease and TAL effector nuclease platforms as the GIY-YIG domain alleviates the requirement to design two nuclease fusions to target a given sequence, highlighting the diversity of nuclease domains with distinctive biochemical properties suitable for genome-editing applications.


Assuntos
Quebras de DNA de Cadeia Dupla , Endonucleases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Engenharia Genética/métodos , Genoma Bacteriano/genética , Sequência de Bases , Domínio Catalítico/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reparo de DNA por Recombinação/fisiologia , Dedos de Zinco/genética
14.
Proc Natl Acad Sci U S A ; 108(32): 13077-82, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21784983

RESUMO

Homing endonucleases mobilize their own genes by generating double-strand breaks at individual target sites within potential host DNA. Because of their high specificity, these proteins are used for "genome editing" in higher eukaryotes. However, alteration of homing endonuclease specificity is quite challenging. Here we describe the identification and phylogenetic analysis of over 200 naturally occurring LAGLIDADG homing endonucleases (LHEs). Biochemical and structural characterization of endonucleases from one clade within the phylogenetic tree demonstrates strong conservation of protein structure contrasted against highly diverged DNA target sites and indicates that a significant fraction of these proteins are sufficiently stable and active to serve as engineering scaffolds. This information was exploited to create a targeting enzyme to disrupt the endogenous monoamine oxidase B gene in human cells. The ubiquitous presence and diversity of LHEs described in this study may facilitate the creation of many tailored nucleases for genome editing.


Assuntos
Endonucleases/metabolismo , Marcação de Genes , Sequência de Aminoácidos , Sequência de Bases , Endonucleases/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Monoaminoxidase/genética , Mutagênese/genética , Ligação Proteica , Engenharia de Proteínas , Especificidade por Substrato
15.
Nucleic Acids Res ; 39(4): 1381-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20972217

RESUMO

Ribonucleotide reductase (RNR) is a critical enzyme of nucleotide metabolism, synthesizing precursors for DNA replication and repair. In prokaryotic genomes, RNR genes are commonly targeted by mobile genetic elements, including free standing and intron-encoded homing endonucleases and inteins. Here, we describe a unique molecular solution to assemble a functional product from the RNR large subunit gene, nrdA that has been fragmented into two smaller genes by the insertion of mobE, a mobile endonuclease. We show that unique sequences that originated during the mobE insertion and that are present as C- and N-terminal tails on the split NrdA-a and NrdA-b polypeptides, are absolutely essential for enzymatic activity. Our data are consistent with the tails functioning as protein interaction domains to assemble the tetrameric (NrdA-a/NrdA-b)(2) large subunit necessary for a functional RNR holoenzyme. The tails represent a solution distinct from RNA and protein splicing or programmed DNA rearrangements to restore function from a fragmented coding region and may represent a general mechanism to neutralize fragmentation of essential genes by mobile genetic elements.


Assuntos
Sequências Repetitivas Dispersas , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Bacteriófagos/enzimologia , Domínio Catalítico , Dimerização , Holoenzimas/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Ribonucleotídeo Redutases/metabolismo
16.
Nat Commun ; 14(1): 5514, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679324

RESUMO

The CRISPR/Cas9 nuclease from Streptococcus pyogenes (SpCas9) can be used with single guide RNAs (sgRNAs) as a sequence-specific antimicrobial agent and as a genome-engineering tool. However, current bacterial sgRNA activity models struggle with accurate predictions and do not generalize well, possibly because the underlying datasets used to train the models do not accurately measure SpCas9/sgRNA activity and cannot distinguish on-target cleavage from toxicity. Here, we solve this problem by using a two-plasmid positive selection system to generate high-quality data that more accurately reports on SpCas9/sgRNA cleavage and that separates activity from toxicity. We develop a machine learning architecture (crisprHAL) that can be trained on existing datasets, that shows marked improvements in sgRNA activity prediction accuracy when transfer learning is used with small amounts of high-quality data, and that can generalize predictions to different bacteria. The crisprHAL model recapitulates known SpCas9/sgRNA-target DNA interactions and provides a pathway to a generalizable sgRNA bacterial activity prediction tool that will enable accurate antimicrobial and genome engineering applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Confiabilidade dos Dados , Endonucleases , Aprendizado de Máquina
17.
ACS Synth Biol ; 12(12): 3578-3590, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38049144

RESUMO

Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for de novo DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines. Using a human metagenomic gut data set representing 2805 taxonomically distinct units, we identified 1598 contigs containing conjugation genes with a differential distribution in human cohorts. We synthesized de novo an entire Citrobacter spp. conjugative system of 54 kb containing at least 47 genes and assembled it into a plasmid, pCitro. We found that pCitro conjugates from Escherichia coli to Citrobacter rodentium with a 30-fold higher frequency than to E. coli, and is compatible with Citrobacter resident plasmids. Mutations in the traV and traY conjugation components of pCitro inhibited conjugation. We showed that pCitro can be repurposed as an antimicrobial delivery agent by programming it with the TevCas9 nuclease and Citrobacter-specific sgRNAs to kill C. rodentium. Our study reveals a trove of uncharacterized conjugative systems in metagenomic data and describes an experimental framework to animate these large genetic systems as novel target-adapted delivery vectors for Cas9-based editing of bacterial genomes.


Assuntos
Anti-Infecciosos , Escherichia coli , Humanos , Escherichia coli/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Conjugação Genética/genética , Plasmídeos/genética
18.
Sci Rep ; 13(1): 12162, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500706

RESUMO

The Ku70/80 heterodimer is a key player in non-homologous end-joining DNA repair but is involved in other cellular functions like telomere regulation and maintenance, in which Ku's role is not fully characterized. It was previously reported that knockout of Ku80 in a human cell line results in lethality, but the underlying cause of Ku essentiality in human cells has yet to be fully explored. Here, we established conditional Ku70 knockout cells using CRISPR/Cas9 editing to study the essentiality of Ku70 function. While we observed loss of cell viability upon Ku depletion, we did not detect significant changes in telomere length, nor did we record lethal levels of DNA damage upon loss of Ku. Analysis of global proteome changes following Ku70 depletion revealed dysregulations of several cellular pathways including cell cycle/mitosis, RNA related processes, and translation/ribosome biogenesis. Our study suggests that the driving cause of loss of cell viability in Ku70 knockouts is not linked to the functions of Ku in DNA repair or at telomeres. Moreover, our data shows that loss of Ku affects multiple cellular processes and pathways and suggests that Ku plays critical roles in cellular processes beyond DNA repair and telomere maintenance to maintain cell viability.


Assuntos
Antígenos Nucleares , Proteínas de Ligação a DNA , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Reparo do DNA/genética , Reparo do DNA por Junção de Extremidades , Dano ao DNA , Telômero/genética , Telômero/metabolismo
19.
Nucleic Acids Res ; 38(7): 2411-27, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20061372

RESUMO

Insight into protein structure and function is best obtained through a synthesis of experimental, structural and bioinformatic data. Here, we outline a framework that we call MUSE (mutual information, unigenic evolution and structure-guided elucidation), which facilitated the identification of previously unknown residues that are relevant for function of the GIY-YIG homing endonuclease I-BmoI. Our approach synthesizes three types of data: mutual information analyses that identify co-evolving residues within the GIY-YIG catalytic domain; a unigenic evolution strategy that identifies hyper- and hypo-mutable residues of I-BmoI; and interpretation of the unigenic and co-evolution data using a homology model. In particular, we identify novel positions within the GIY-YIG domain as functionally important. Proof-of-principle experiments implicate the non-conserved I71 as functionally relevant, with an I71N mutant accumulating a nicked cleavage intermediate. Moreover, many additional positions within the catalytic, linker and C-terminal domains of I-BmoI were implicated as important for function. Our results represent a platform on which to pursue future studies of I-BmoI and other GIY-YIG-containing proteins, and demonstrate that MUSE can successfully identify novel functionally critical residues that would be ignored in a traditional structure-function analysis within an extensively studied small domain of approximately 90 amino acids.


Assuntos
Biologia Computacional/métodos , Endodesoxirribonucleases/química , Aminoácidos/química , Domínio Catalítico , Clivagem do DNA , Interpretação Estatística de Dados , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Evolução Molecular , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência
20.
BMC Biol ; 9: 22, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21481283

RESUMO

Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural RNA genes in all domains of life. They function as self-splicing ribozymes and thereby limit the phenotypic costs associated with disruption of a host gene while they act as mobile DNA elements to promote their spread within and between genomes. Once considered purely selfish DNA elements, they now seem, in the light of recent work on the molecular mechanisms regulating bacterial and phage group I and II intron dynamics, to show evidence of co-evolution with their hosts. These previously underappreciated relationships serve the co-evolving entities particularly well in times of environmental stress.


Assuntos
Fenômenos Fisiológicos Bacterianos , Bacteriófagos/fisiologia , Interações Hospedeiro-Patógeno , Íntrons , Fenômenos Fisiológicos Virais , Animais , Bactérias/genética , Evolução Molecular , Humanos , Modelos Moleculares , Splicing de RNA , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA