Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E428-E442, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324258

RESUMO

Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.


Assuntos
Glucagon , Insulina , Humanos , Cães , Animais , Glucagon/metabolismo , Insulina/metabolismo , Transcriptoma , Glucose/metabolismo , Fígado/metabolismo , Gluconeogênese/genética , Glicemia/metabolismo
2.
Am J Physiol Endocrinol Metab ; 324(2): E199-E208, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652399

RESUMO

It has been proposed that brain glucagon action inhibits glucagon-stimulated hepatic glucose production (HGP), which may explain, at least in part, why glucagon's effect on HGP is transient. However, the pharmacologic off-target effects of glucagon in the brain may have been responsible for previously observed effects. Therefore, the aim of this study was to determine if central glucagon action plays a physiologic role in the regulation of HGP. Insulin was maintained at baseline while glucagon was either infused into the carotid and vertebral arteries or into a peripheral (leg) vein at rates designed to increase glucagon in the head in one group, while keeping glucagon at the liver matched between groups. The extraction rate of glucagon across the head was high (double that of the liver), and hypothalamic cAMP increased twofold, in proportion to the exposure of the brain to increased glucagon, but HGP was not reduced by the increase in brain glucagon signaling, as had been suggested previously (the areas under the curve for HGP were 840 ± 14 vs. 871 ± 36 mg/kg/240 min in head vs. peripheral infusion groups, respectively). Central nervous system glucagon action reduced circulating free fatty acids and glycerol, and this was associated with a modest reduction in net hepatic gluconeogenic flux. However, offsetting autoregulation by the liver (i.e., a reciprocal increase in net hepatic glycogenolysis) prevented a change in HGP. Thus, while physiologic engagement of the brain by glucagon can alter hepatic carbon flux, it does not appear to be responsible for the transient fall in HGP that occurs following the stimulation of HGP during a square wave rise in glucagon.NEW & NOTEWORTHY Glucagon stimulates hepatic glucose production through its direct effects on the liver but may indirectly inhibit this process by acting on the brain. This was tested by delivering glucagon via the cerebral circulatory system. Central nervous system glucagon action reduced liver gluconeogenic flux, but glycogenolysis increased, resulting in no net change in hepatic glucose production. Surprisingly, brain glucagon also appeared to suppress lipolysis (plasma free fatty acid and glycerol levels were reduced).


Assuntos
Glucagon , Glicogenólise , Glicemia/metabolismo , Encéfalo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glucagon/metabolismo , Gluconeogênese , Glucose/metabolismo , Glicerol/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Animais
3.
Am J Physiol Endocrinol Metab ; 320(5): E891-E897, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813879

RESUMO

Pancreatic insulin secretion produces an insulin gradient at the liver compared with the rest of the body (approximately 3:1). This physiological distribution is lost when insulin is injected subcutaneously, causing impaired regulation of hepatic glucose production and whole body glucose uptake, as well as arterial hyperinsulinemia. Thus, the hepatoportal insulin gradient is essential to the normal control of glucose metabolism during both fasting and feeding. Insulin can regulate hepatic glucose production and uptake through multiple mechanisms, but its direct effects on the liver are dominant under physiological conditions. Given the complications associated with iatrogenic hyperinsulinemia in patients treated with insulin, insulin designed to preferentially target the liver may have therapeutic advantages.


Assuntos
Glucose/metabolismo , Controle Glicêmico/métodos , Insulina/administração & dosagem , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Vias de Administração de Medicamentos , Gluconeogênese/efeitos dos fármacos , Controle Glicêmico/efeitos adversos , Humanos , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Insulina/efeitos adversos , Sistemas de Infusão de Insulina , Secreção de Insulina/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo
4.
Am J Physiol Endocrinol Metab ; 320(5): E914-E924, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779306

RESUMO

Iatrogenic hypoglycemia is a prominent barrier to achieving optimal glycemic control in patients with diabetes, in part due to dampened counterregulatory hormone responses. It has been demonstrated that elevated liver glycogen content can enhance these hormonal responses through signaling to the brain via afferent nerves, but the role that hypoglycemia in the brain plays in this liver glycogen effect remains unclear. During the first 4 h of each study, the liver glycogen content of dogs was increased by using an intraportal infusion of fructose to stimulate hepatic glucose uptake (HG; n = 13), or glycogen was maintained near fasting levels with a saline infusion (NG; n = 6). After a 2-h control period, during which the fructose/saline infusion was discontinued, insulin was infused intravenously for an additional 2 h to bring about systemic hypoglycemia in all animals, whereas brain euglycemia was maintained in a subset of the HG group by infusing glucose bilaterally into the carotid and vertebral arteries (HG-HeadEu; n = 7). Liver glycogen content was markedly elevated in the two HG groups (43 ± 4, 73 ± 3, and 75 ± 7 mg/g in NG, HG, and HG-HeadEu, respectively). During the hypoglycemic period, arterial plasma glucose levels were indistinguishable between groups (53 ± 2, 52 ± 1, and 51 ± 1 mg/dL, respectively), but jugular vein glucose levels were kept euglycemic (88 ± 5 mg/dL) only in the HG-HeadEu group. Glucagon and epinephrine responses to hypoglycemia were higher in HG compared with NG, whereas despite the increase in liver glycogen, neither increased above basal in HG-HeadEu. These data demonstrate that the enhanced counterregulatory hormone secretion that accompanies increased liver glycogen content requires hypoglycemia in the brain.NEW & NOTEWORTHY It is well known that iatrogenic hypoglycemia is a barrier to optimal glycemic regulation in patients with diabetes. Our data confirm that increasing liver glycogen content 75% above fasting levels enhances hormonal responses to insulin-induced hypoglycemia and demonstrate that this enhanced hormonal response does not occur in the absence of hypoglycemia in the brain. These data demonstrate that information from the liver regarding glycogen availability is integrated in the brain to optimize the counterregulatory response.


Assuntos
Encéfalo/metabolismo , Hipoglicemia/metabolismo , Hipoglicemiantes/farmacologia , Glicogênio Hepático/fisiologia , Animais , Glicemia/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cães , Feminino , Gluconeogênese/efeitos dos fármacos , Glucose/deficiência , Glucose/metabolismo , Técnica Clamp de Glucose , Glicogênio/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/patologia , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino
5.
Am J Physiol Endocrinol Metab ; 318(5): E779-E790, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208001

RESUMO

Glucagon's effect on hepatic glucose production (HGP), under hyperglycemic conditions, is time dependent such that after an initial burst of HGP, it slowly wanes. It is not known whether this is also the case under hypoglycemic conditions, where an increase in HGP is essential. This question was addressed using adrenalectomized dogs to avoid the confounding effects of other counterregulatory hormones. During the study, infusions of epinephrine and cortisol were given to maintain basal levels. Somatostatin and insulin (800 µU·kg-1·min-1) were infused to induce hypoglycemia. After 30 min, glucagon was infused at a basal rate (1 ng·kg-1·min-1, baGGN group, n = 5 dogs) or a rate eightfold basal (8 ng·kg-1·min-1, hiGGN group, n = 5 dogs) for 4 h. Glucose was infused to match the arterial glucose levels between groups (≈50 mg/dL). Our data showed that glucagon has a biphasic effect on the liver despite hypoglycemia. Hyperglucagonemia stimulated a rapid, transient peak in HGP (4-fold basal production) over ~60 min, which was followed by a slow reduction in HGP to a rate 1.5-fold basal. During the last 2 h of the experiment, hiGGN stimulated glucose production at a rate fivefold greater than baGGN (2.5 vs. 0.5 mg·kg-1·min-1, respectively), indicating a sustained effect of the hormone. Of note, the hypoglycemia-induced rises in norepinephrine and glycerol were smaller in hiGGN compared with the baGGN group despite identical hypoglycemia. This finding suggests that there is reciprocity between glucagon and the sympathetic nervous system such that when glucagon is increased, the sympathetic nervous response to hypoglycemia is downregulated.


Assuntos
Glucagon/farmacocinética , Gluconeogênese/efeitos dos fármacos , Hipoglicemia/metabolismo , Fígado/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Adrenalectomia , Animais , Cães , Epinefrina/farmacologia , Feminino , Hidrocortisona/farmacologia , Hipoglicemia/induzido quimicamente , Insulina , Fígado/metabolismo , Masculino , Somatostatina , Sistema Nervoso Simpático/metabolismo
6.
Am J Physiol Endocrinol Metab ; 317(2): E244-E249, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31112407

RESUMO

It is unknown whether activation of hepato-portal vein (PV) glucose sensors plays a role in incretin hormone amplification of oral glucose-stimulated insulin secretion (GSIS). In previous studies, PV glucose infusion increased GSIS through unknown mechanisms, perhaps neural stimulation of pancreatic ß-cells and/or stimulation of gut incretin hormone release. Thus, there could be a difference in the incretin effect when comparing GSIS with portal rather than leg vein (LV) glucose infusion. Plasma insulin and incretin hormones were studied in six overnight-fasted dogs. An oral glucose tolerance test (OGTT) was administered, and then 1 and 2 wk later the arterial plasma glucose profile from the OGTT was mimicked by infusing glucose into either the PV or a LV. The arterial glucose levels were nearly identical between groups (AUCs within 1% of each other). Oral glucose administration increased arterial GLP-1 and GIP levels by more than sixfold, whereas they were not elevated by PV or LV glucose infusion. Oral glucose delivery was associated with only a small incretin effect (arterial insulin and C-peptide were 21 ± 23 and 24 ± 17% greater, respectively, during the 1st hour with oral compared with PV glucose and 14 ± 37 and 13 ± 35% greater, respectively, in oral versus LV; PV versus LV responses were not significantly different from each other). Thus, following an OGTT incretin hormone release did not depend on activation of PV glucose sensors, and the insulin response was not greater with PV compared with LV glucose infusion in the dog. The small incretin effect points to species peculiarities, which is perhaps related to diet.


Assuntos
Glucose/farmacologia , Incretinas/metabolismo , Veia Porta/metabolismo , Animais , Glicemia/análise , Peptídeo C/sangue , Cães , Feminino , Polipeptídeo Inibidor Gástrico/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Membro Posterior/irrigação sanguínea , Infusões Intravenosas , Insulina/sangue , Insulina/metabolismo , Masculino , Veia Porta/química , Fluxo Sanguíneo Regional , Veias
7.
Am J Physiol Endocrinol Metab ; 313(3): E273-E283, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512154

RESUMO

The contribution of hormone-independent counterregulatory signals in defense of insulin-induced hypoglycemia was determined in adrenalectomized, overnight-fasted conscious dogs receiving hepatic portal vein insulin infusions at a rate 20-fold basal. Either euglycemia was maintained (group 1) or hypoglycemia (≈45 mg/dl) was allowed to occur. There were three hypoglycemic groups: one in which hepatic autoregulation against hypoglycemia occurred in the absence of sympathetic nervous system input (group 2), one in which autoregulation occurred in the presence of norepinephrine (NE) signaling to fat and muscle (group 3), and one in which autoregulation occurred in the presence of NE signaling to fat, muscle, and liver (group 4). Average net hepatic glucose balance (NHGB) during the last hour for groups 1-4 was -0.7 ± 0.1, 0.3 ± 0.1 (P < 0.01 vs. group 1), 0.7 ± 0.1 (P = 0.01 vs. group 2), and 0.8 ± 0.1 (P = 0.7 vs. group 3) mg·kg-1·min-1, respectively. Hypoglycemia per se (group 2) increased NHGB by causing an inhibition of net hepatic glycogen synthesis. NE signaling to fat and muscle (group 3) increased NHGB further by mobilizing gluconeogenic precursors resulting in a rise in gluconeogenesis. Lowering glucose per se decreased nonhepatic glucose uptake by 8.9 mg·kg-1·min-1, and the addition of increased neural efferent signaling to muscle and fat blocked glucose uptake further by 3.2 mg·kg-1·min-1 The addition of increased neural efferent input to liver did not affect NHGB or nonhepatic glucose uptake significantly. In conclusion, even in the absence of increases in counterregulatory hormones, the body can defend itself against hypoglycemia using glucose autoregulation and increased neural efferent signaling, both of which stimulate hepatic glucose production and limit glucose utilization.


Assuntos
Glicemia/efeitos dos fármacos , Hipoglicemia/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fígado/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adrenalectomia , Animais , Glicemia/metabolismo , Cães , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Técnica Clamp de Glucose , Homeostase , Hipoglicemia/induzido quimicamente , Infusões Intravenosas , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Músculo Esquelético/metabolismo , Norepinefrina/metabolismo , Veia Porta , Sistema Nervoso Simpático
8.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38798653

RESUMO

The second meal phenomenon refers to the improvement in glucose tolerance seen following a second identical meal. We previously showed that 4 hours of morning (AM) hyperinsulinemia, but not hyperglycemia, enhanced hepatic glucose uptake (HGU) and glycogen storage during an afternoon (PM) hyperinsulinemic hyperglycemic clamp (HIHG). Our current aim was to determine if the duration or pattern of morning hyperinsulinemia is important for the PM response to a HIHG clamp. To determine this, we administered the same total amount of insulin either over 2h in the first half of the morning (Ins2h-A), over 2h in the 2nd half of the morning (Ins2h-B), or over the entire 4h (Ins4h) of the morning. In the 4h PM period, all three groups had 4x basal insulin, 2x basal glycemia, and portal glucose infusion to simulate a meal. During the PM clamp, there was a marked increase in the mean hepatic glucose uptake and hepatic glycogen synthesis in the Ins4h group compared to the Ins2h-A and Ins2h-B groups, despite matched hepatic glucose and insulin loads. Thus, the longer duration (Ins4h) of mild hyperinsulinemia in the morning seems to be the key to much greater liver glucose uptake during the PM clamp.

9.
Am J Physiol Endocrinol Metab ; 305(1): E132-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23673158

RESUMO

Incretins improve glucose metabolism through multiple mechanisms. It remains unclear whether direct hepatic effects are an important part of exenatide's (Ex-4) acute action. Therefore, the objective of this study was to determine the effect of intraportal delivery of Ex-4 on hepatic glucose production and uptake. Fasted conscious dogs were studied during a hyperglycemic clamp in which glucose was infused into the hepatic portal vein. At the same time, portal saline (control; n = 8) or exenatide was infused at low (0.3 pmol·kg⁻¹·min⁻¹, Ex-4-low; n = 5) or high (0.9 pmol·kg⁻¹·min⁻¹, Ex-4-high; n = 8) rates. Arterial plasma glucose levels were maintained at 160 mg/dl during the experimental period. This required a greater rate of glucose infusion in the Ex-4-high group (1.5 ± 0.4, 2.0 ± 0.7, and 3.7 ± 0.7 mg·kg⁻¹·min⁻¹ between 30 and 240 min in the control, Ex-4-low, and Ex-4-high groups, respectively). Plasma insulin levels were elevated by Ex-4 (arterial: 4,745 ± 428, 5,710 ± 355, and 7,262 ± 1,053 µU/ml; hepatic sinusoidal: 14,679 ± 1,700, 15,341 ± 2,208, and 20,445 ± 4,020 µU/ml, 240 min, area under the curve), whereas the suppression of glucagon was nearly maximal in all groups. Although glucose utilization was greater during Ex-4 infusion (5.92 ± 0.53, 6.41 ± 0.57, and 8.12 ± 0.54 mg·kg⁻¹·min⁻¹), when indices of hepatic, muscle, and whole body glucose uptake were expressed relative to circulating insulin concentrations, there was no indication of insulin-independent effects of Ex-4. Thus, this study does not support the notion that Ex-4 generates acute changes in hepatic glucose metabolism through direct effects on the liver.


Assuntos
Glucose/metabolismo , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Estado de Consciência , Cães , Exenatida , Feminino , Glucose/farmacologia , Hiperglicemia/metabolismo , Hipoglicemiantes/sangue , Infusões Intravenosas , Insulina/sangue , Ácido Láctico/sangue , Fígado/metabolismo , Masculino , Peptídeos/sangue , Veia Porta , Peçonhas/sangue
10.
Diabetes ; 72(2): 196-209, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280227

RESUMO

Endogenous insulin secretion is a key regulator of postprandial hepatic glucose metabolism, but this process is dysregulated in diabetes. Subcutaneous insulin delivery alters normal insulin distribution, causing relative hepatic insulin deficiency and peripheral hyperinsulinemia, a major risk factor for metabolic disease. Our aim was to determine whether insulin's direct effect on the liver is preeminent even when insulin is given into a peripheral vein. Postprandial-like conditions were created (hyperinsulinemia, hyperglycemia, and a positive portal vein to arterial glucose gradient) in healthy dogs. Peripheral (leg vein) insulin infusion elevated arterial and hepatic levels 8.0-fold and 2.8-fold, respectively. In one group, insulin's full effects were allowed. In another, insulin's indirect hepatic effects were blocked with the infusion of triglyceride, glucagon, and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids and glucagon, while blocking increased hypothalamic insulin signaling. Despite peripheral insulin delivery the liver retained its full ability to store glucose, even when insulin's peripheral effects were blocked, whereas muscle glucose uptake markedly increased, creating an aberrant distribution of glucose disposal between liver and muscle. Thus, the healthy liver's striking sensitivity to direct insulin action can overcome the effect of relative hepatic insulin deficiency, whereas excess insulin in the periphery produces metabolic abnormalities in nonhepatic tissues.


Assuntos
Hiperinsulinismo , Insulina , Fígado , Animais , Cães , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/metabolismo , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
11.
bioRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37808670

RESUMO

Glucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group glucose remained at basal while in the other glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) but only partially sustained increase in hepatic cAMP over 4h, a continued elevation in G6P, and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis and HGP increased rapidly, peaking at 30 min, then returned to baseline over the next 3h (although glucagons stimulatory effect on HGP was sustained relative to the hyperglycemic control group). Hepatic gluconeogenic flux did not increase due to lack of glucagon effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, and downregulation of genes involved in extracellular matrix assembly and development.

12.
PLoS One ; 18(12): e0296400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134122

RESUMO

This study examined the impact of a hypercaloric high-fat high-fructose diet (HFFD) in dogs as a potential model for human impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). The HFFD not only led to weight gain but also triggered metabolic alterations akin to the precursors of human T2DM, notably insulin resistance and ß-cell dysfunction. Following the HFFD intervention, the dogs exhibited a 50% decrease in insulin sensitivity within the first four weeks, paralleling observations in the progression from normal to IGT in humans. Calculations of the insulinogenic index using both insulin and C-peptide measurements during oral glucose tolerance tests revealed a significant and sustained decrease in early-phase insulin release, with partial compensation in the later phase, predominantly stemming from reduced hepatic insulin clearance. In addition, the Disposition Index, representing the ß-cell's capacity to compensate for diminished insulin sensitivity, fell dramatically. These results confirm that a HFFD can instigate metabolic changes in dogs akin to the early stages of progression to T2DM in humans. The study underscores the potential of using dogs subjected to a HFFD as a model organism for studying human IGT and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Humanos , Cães , Animais , Frutose , Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glicemia/metabolismo
13.
Diabetes ; 70(6): 1292-1302, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33757993

RESUMO

Hepatic glucose uptake (HGU) is critical for maintaining normal postprandial glucose metabolism. Insulin is clearly a key regulator of HGU, but the physiologic mechanisms by which it acts have yet to be established. This study sought to determine the mechanisms by which insulin regulates liver glucose uptake under postprandial-like conditions (hyperinsulinemia, hyperglycemia, and a positive portal vein-to-arterial glucose gradient). Portal vein insulin infusion increased hepatic insulin levels fivefold in healthy dogs. In one group (n = 7), the physiologic response was allowed to fully occur, while in another (n = 7), insulin's indirect hepatic effects, occurring secondary to its actions on adipose tissue, pancreas, and brain, were blocked. This was accomplished by infusing triglyceride (intravenous), glucagon (portal vein), and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids or glucagon, while blocking increased hypothalamic insulin signaling for 4 h. In contrast to the indirect hepatic effects of insulin, which were previously shown capable of independently generating a half-maximal stimulation of HGU, direct hepatic insulin action was by itself able to fully stimulate HGU. This suggests that under hyperinsulinemic/hyperglycemic conditions insulin's indirect effects are redundant to direct engagement of hepatocyte insulin receptors.


Assuntos
Glucose/farmacocinética , Insulina/farmacologia , Fígado/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Cães , Ingestão de Alimentos/fisiologia , Feminino , Fígado/efeitos dos fármacos , Masculino , Refeições/fisiologia , Transdução de Sinais/efeitos dos fármacos
14.
Physiol Rep ; 9(6): e14805, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33769710

RESUMO

The objective of this study was to assess the safety of surgical common hepatic artery denervation (CHADN). This procedure has previously been shown to improve glucose tolerance in dogs fed a high-fat high-fructose (HFHF) diet. We assessed the hypoglycemic response of dogs by infusing insulin at a constant rate (1.5 mU/kg/min) for 3 h and monitoring glucose and the counterregulatory hormones (glucagon, catecholamine, and cortisol). After an initial hypoglycemic study, the dogs were randomly assigned to a SHAM surgery (n = 4) or hepatic sympathetic denervation (CHADN, n = 5) and three follow-up studies were performed every month up to 3 months after the surgery. The level of norepinephrine (NE) in the liver and the pancreas was significantly reduced in the CHADN dogs, showing a decrease in sympathetic tone to the splanchnic organs. There was no evidence of any defect of the response to hypoglycemia after the CHADN surgery. Indeed, the extent of hypoglycemia was similar in the SHAM and CHADN groups (~45 mg/dl) for the same amount of circulating insulin (~50 µU/ml) regardless of time or surgery. Moreover the responses of the counterregulatory hormones were similar in extent and pattern during the 3 h of hypoglycemic challenge. Circulating lactate, glycerol, free fatty acids, and beta-hydroxybutyrate were also unaffected by CHADN during fasting conditions or during the hypoglycemia. There were no other notable surgery-induced changes over time in nutrients, minerals, and hormones clinically measured in the dogs nor in the blood pressure and heart rate of the animals. The data suggest that the ablation of the sympathetic nerve connected to the splanchnic bed is not required for a normal counterregulatory response to insulin-induced hypoglycemia and that CHADN could be a safe new therapeutic intervention to improve glycemic control in individuals with metabolic syndrome or type 2 diabetes.


Assuntos
Artéria Hepática/inervação , Artéria Hepática/cirurgia , Resistência à Insulina , Animais , Denervação/métodos , Modelos Animais de Doenças , Cães , Técnica Clamp de Glucose , Intolerância à Glucose , Hiperglicemia , Masculino
15.
Am J Physiol Endocrinol Metab ; 298(5): E1019-26, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20159854

RESUMO

Inactive cortisone is converted to active cortisol within the liver by 11 beta-hydroxysteroid dehydrogenase-1 (11 beta-HSD1), and impaired regulation of this process may be related to increased hepatic glucose production (HGP) in individuals with type 2 diabetes. The primary aim of this study was to investigate the effect of acute 11 beta-HSD1 inhibition on HGP and fat metabolism during insulin deficiency. Sixteen conscious, 42-h-fasted, lean, healthy dogs were studied. Somatostatin was infused to create insulin deficiency, and the animals were treated with a specific 11 beta-HSD1 inhibitor (compound 531) or placebo for 5 h. 11 beta-HSD1 inhibition completely suppressed hepatic cortisol production, and this attenuated the increase in HGP that occurred during insulin deficiency. PEPCK and glucose-6-phosphatase expression were decreased when 11 beta-HSD1 was inhibited, but gluconeogenic flux was unchanged, implying an effect on glycogenolysis. Since inhibition of hepatic cortisol production reduces HGP during insulin deficiency, 11 beta-HSD1 is a potential therapeutic target for the treatment of excess glucose production that occurs in diabetes.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Gluconeogênese/fisiologia , Glucose/metabolismo , Fígado/metabolismo , Análise de Variância , Animais , Cães , Feminino , Gluconeogênese/efeitos dos fármacos , Hidrocortisona/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Masculino , Distribuição Aleatória , Somatostatina/farmacologia
16.
J Clin Invest ; 116(2): 521-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16453026

RESUMO

Insulin inhibits glucose production through both direct and indirect effects on the liver; however, considerable controversy exists regarding the relative importance of these effects. The first aim of this study was to determine which of these processes dominates the acute control of hepatic glucose production (HGP). Somatostatin and portal vein infusions of insulin and glucagon were used to clamp the pancreatic hormones at basal levels in the nondiabetic dog. After a basal sampling period, insulin infusion was switched from the portal vein to a peripheral vein. As a result, the arterial insulin level doubled and the hepatic sinusoidal insulin level was reduced by half. While the arterial plasma FFA level and net hepatic FFA uptake fell by 40-50%, net hepatic glucose output increased more than 2-fold and remained elevated compared with that in the control group. The second aim of this study was to determine the effect of a 4-fold rise in head insulin on HGP during peripheral hyperinsulinemia and hepatic insulin deficiency. Sensitivity of the liver was not enhanced by increased insulin delivery to the head. Thus, this study demonstrates that the direct effects of insulin dominate the acute regulation of HGP in the normal dog.


Assuntos
Gluconeogênese , Glucose/biossíntese , Insulina/metabolismo , Fígado/metabolismo , Animais , Cães , Jejum , Ácidos Graxos/metabolismo , Glucagon/metabolismo , Insulina/administração & dosagem , Veia Porta , Somatostatina/metabolismo
17.
J Pharmacol Exp Ther ; 328(3): 970-5, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19098161

RESUMO

Diabetic patients treated with inhaled insulin exhibit reduced fasting plasma glucose levels. In dogs, insulin action in muscle is enhanced for as long as 3 h after insulin inhalation. This study was designed to determine whether this effect lasts for a prolonged duration such that it could explain the effect observed in diabetic patients. Human insulin was administered via inhalation (Exubera; n = 9) or infusion (Humulin R; n = 9) in dogs using an infusion algorithm that yielded matched plasma insulin kinetics between the two groups. Somatostatin was infused to prevent insulin secretion, and glucagon was infused to replace basal plasma levels of the hormone. Glucose was infused into the portal vein at 4 mg/kg/min and into a peripheral vein to maintain the arterial plasma glucose level at 160 mg/dl. Arterial and hepatic sinusoidal insulin and glucose levels were virtually identical in the two groups. Notwithstanding, glucose utilization was greater when insulin was administered by inhalation. At its peak, the peripheral glucose infusion rate was 4 mg/kg/min greater in the inhalation group, and a 50% difference between groups persisted over 8 h. Inhalation of insulin caused a greater increase in nonhepatic glucose uptake in the first 3 h after inhalation; thereafter, net hepatic glucose uptake was greater. Inhalation of insulin was associated with greater than expected (based on insulin levels) glucose disposal. This may explain the reduced fasting glucose concentrations observed in humans after administration of certain inhaled insulin formulations compared with subcutaneous insulin.


Assuntos
Glucose/metabolismo , Insulina/administração & dosagem , Fígado/metabolismo , Músculo Esquelético/metabolismo , Administração por Inalação , Algoritmos , Animais , Diabetes Mellitus/tratamento farmacológico , Cães , Humanos , Bombas de Infusão , Insulina/farmacocinética , Insulina/uso terapêutico , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
18.
Diabetes ; 68(6): 1143-1155, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936143

RESUMO

This study assessed the effectiveness of surgical sympathetic denervation of the common hepatic artery (CHADN) in improving glucose tolerance. CHADN eliminated norepinephrine content in the liver and partially decreased it in the pancreas and the upper gut. We assessed oral glucose tolerance at baseline and after 4 weeks of high-fat high-fructose (HFHF) feeding. Dogs were then randomized to sham surgery (SHAM) (n = 9) or CHADN surgery (n = 11) and retested 2.5 or 3.5 weeks later while still on the HFHF diet. CHADN improved glucose tolerance by ∼60% in part because of enhanced insulin secretion, as indicated by an increase in the insulinogenic index. In a subset of dogs (SHAM, n = 5; CHADN, n = 6), a hyperinsulinemic-hyperglycemic clamp was used to assess whether CHADN could improve hepatic glucose metabolism independent of a change in insulin release. CHADN reduced the diet-induced defect in net hepatic glucose balance by 37%. In another subset of dogs (SHAM, n = 4; CHADN, n = 5) the HFHF diet was continued for 3 months postsurgery and the improvement in glucose tolerance caused by CHADN continued. In conclusion, CHADN has the potential to enhance postprandial glucose clearance in states of diet-induced glucose intolerance.


Assuntos
Dieta Hiperlipídica , Açúcares da Dieta , Intolerância à Glucose/metabolismo , Artéria Hepática/inervação , Fígado/metabolismo , Norepinefrina/metabolismo , Simpatectomia , Animais , Cães , Frutose , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Masculino , Pâncreas/metabolismo , Distribuição Aleatória , Trato Gastrointestinal Superior/metabolismo
19.
JCI Insight ; 52019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30830873

RESUMO

Peripheral hyperinsulinemia resulting from subcutaneous insulin injection is associated with metabolic defects which include abnormal glucose metabolism. The first aim of this study was to quantify the impairments in liver and muscle glucose metabolism that occur when insulin is delivered via a peripheral vein compared to when it is given through its endogenous secretory route (the hepatic portal vein) in overnight fasted conscious dogs. The second aim was to determine if peripheral delivery of a hepato-preferential insulin analog could restore the physiologic response to insulin that occurs under meal feeding conditions. This study is the first to show that hepatic glucose uptake correlates with insulin's direct effects on the liver under hyperinsulinemic-hyperglycemic conditions. In addition, glucose uptake was equally divided between the liver and muscle when insulin was infused into the portal vein, but when it was delivered into a peripheral vein the percentage of glucose taken up by muscle was 4-times greater than that going to the liver, with liver glucose uptake being less than half of normal. These defects could not be corrected by adjusting the dose of peripheral insulin. On the other hand, hepatic and non-hepatic glucose metabolism could be fully normalized by a hepato-preferential insulin analog.


Assuntos
Glucose/metabolismo , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Veia Porta , Animais , Cães , Técnica Clamp de Glucose , Membro Posterior/irrigação sanguínea , Insulina/análogos & derivados , Fígado/metabolismo , Músculo Esquelético/metabolismo , Veias
20.
Nutr Diabetes ; 9(1): 25, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474750

RESUMO

BACKGROUND: Aerobic exercise training is known to have beneficial effects on whole-body glucose metabolism in people with type 2 diabetes (T2D). The responses of the liver to such training are less well understood. The purpose of this study was to determine the effect of aerobic exercise training on splanchnic glucose uptake (SGU) and insulin-mediated suppression of endogenous glucose production (EGP) in obese subjects with T2D. METHODS: Participants included 11 obese humans with T2D, who underwent 15 ± 2 weeks of aerobic exercise training (AEX; n = 6) or remained sedentary for 15 ± 1 weeks (SED; n = 5). After an initial screening visit, each subject underwent an oral glucose load clamp and an isoglycemic/two-step (20 and 40 mU/m2/min) hyperinsulinemic clamp (ISO-clamp) to assess SGU and insulin-mediated suppression of EGP, respectively. After the intervention period, both tests were repeated. RESULTS: In AEX, the ability of insulin to suppress EGP was improved during both the low (69 ± 9 and 80 ± 6% suppression; pre-post, respectively; p < 0.05) and high (67 ± 6 and 82 ± 4% suppression, respectively; p < 0.05) insulin infusion periods. Despite markedly improved muscle insulin sensitivity, SGU was reduced in AEX after training (22.9 ± 3.3 and 9.1 ± 6.0 g pre-post in AEX, respectively; p < 0.05). CONCLUSIONS: In obese T2D subjects, exercise training improves whole-body glucose metabolism, in part, by improving insulin-mediated suppression of EGP and enhancing muscle glucose uptake, which occur despite reduced SGU during an oral glucose challenge.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Diabetes Mellitus Tipo 2/complicações , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA