Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(20): 208101, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829058

RESUMO

In order to determine the structural relaxation time of a polymer glass during deformation, a strain rate switching experiment is performed in the steady-state plastic flow regime. A lightly cross-linked poly(methylmethacrylate) glass was utilized and, simultaneously, the segmental motion in the glass was quantified using an optical probe reorientation method. After the strain rate switch, a nonmonotonic stress response is observed, consistent with previous work. The correlation time for segmental motion, in contrast, monotonically evolves toward a new steady state, providing an unambiguous measurement of the structural relaxation time during deformation, which is found to be approximately equal to the segmental correlation time. The Chen-Schweizer model qualitatively predicts the changes in the segmental correlation time and the observed nonmonotonic stress response. In addition, our experiments are reasonably consistent with the material time assumption used in polymer deformation modeling; in this approach, the response of a polymer glass to a large deformation is described by combining a linear-response model with a time-dependent segmental correlation time.

2.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37724735

RESUMO

Upon heating, ultrastable glassy films transform into liquids via a propagating equilibration front, resembling the heterogeneous melting of crystals. A microscopic understanding of this robust phenomenology is, however, lacking because experimental resolution is limited. We simulate the heterogeneous transformation kinetics of ultrastable configurations prepared using the swap Monte Carlo algorithm, thus allowing a direct comparison with experiments. We resolve the liquid-glass interface both in space and in time as well as the underlying particle motion responsible for its propagation. We perform a detailed statistical analysis of the interface geometry and kinetics over a broad range of temperatures. We show that the dynamic heterogeneity of the bulk liquid is passed on to the front that propagates heterogeneously in space and intermittently in time. This observation allows us to relate the averaged front velocity to the equilibrium diffusion coefficient of the liquid. We suggest that an experimental characterization of the interface geometry during the heterogeneous devitrification of ultrastable glassy films could provide direct experimental access to the long-sought characteristic length scale of dynamic heterogeneity in bulk supercooled liquids.

3.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038197

RESUMO

Physical vapor deposition (PVD) provides a route to prepare highly stable and anisotropic organic glasses that are utilized in multi-layer structures such as organic light-emitting devices. While previous work has demonstrated that anisotropic glasses with uniaxial symmetry can be prepared by PVD, here, we prepare biaxially aligned glasses in which molecular orientation has a preferred in-plane direction. With the collective effect of the surface equilibration mechanism and template growth on an aligned substrate, macroscopic biaxial alignment is achieved in depositions as much as 180 K below the clearing point TLC-iso (and 50 K below the glass transition temperature Tg) with single-component disk-like (phenanthroperylene ester) and rod-like (itraconazole) mesogens. The preparation of biaxially aligned organic semiconductors adds a new dimension of structural control for vapor-deposited glasses and may enable polarized emission and in-plane control of charge mobility.

4.
J Chem Phys ; 154(2): 024502, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445905

RESUMO

Depositing a simple organic molecular glass-former 2-methyltetrahydrofuran (MTHF) onto an interdigitated electrode device via physical vapor deposition gives rise to an unexpected variety of states, as revealed by dielectric spectroscopy. Different preparation parameters, such as deposition temperature, deposition rate, and annealing conditions, lead, on the one hand, to an ultrastable glass and, on the other hand, to a continuum of newfound further states. Deposition below the glass transition temperature of MTHF leads to loss profiles with shape parameters and peak frequencies that differ from those of the known bulk MTHF. These loss spectra also reveal an additional process with Arrhenius-like temperature dependence, which can be more than four decades slower than the main structural relaxation peak. At a given temperature, the time constants of MTHF deposited between 120 K and 127 K span a range of more than three decades and their temperature dependencies change from strong to fragile behavior. This polyamorphism involves at least three distinct states, each persisting for a duration many orders of magnitude above the dielectric relaxation time. These results represent a significant expansion of a previous dielectric study on vapor deposited MTHF [B. Riechers et al., J. Chem. Phys. 150, 214502 (2019)]. Plastic crystal states and the effects of weak hydrogen bonding are discussed as structural features that could explain these unusual states.

5.
Phys Rev Lett ; 120(5): 055502, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481153

RESUMO

Liquid crystals (LCs) are known to undergo rapid ordering transitions with virtually no hysteresis. We report a remarkable counterexample, itraconazole, where the nematic to smectic transition is avoided at a cooling rate exceeding 20 K/s. The smectic order trapped in a glass is the order reached by the equilibrium liquid before the kinetic arrest of the end-over-end molecular rotation. This is attributed to the fact that smectic ordering requires orientational ordering and suggests a general condition for preparing organic glasses with tunable LC order for electronic applications.

7.
Proc Natl Acad Sci U S A ; 108(15): 5990-5, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444775

RESUMO

The crystallization of glasses and amorphous solids is studied in many fields to understand the stability of amorphous materials, the fabrication of glass ceramics, and the mechanism of biomineralization. Recent studies have found that crystal growth in organic glasses can be orders of magnitude faster at the free surface than in the interior, a phenomenon potentially important for understanding glass crystallization in general. Current explanations differ for surface-enhanced crystal growth, including released tension and enhanced mobility at glass surfaces. We report here a feature of the phenomenon relevant for elucidating its mechanism: Despite their higher densities, surface crystals rise substantially above the glass surface as they grow laterally, without penetrating deep into the bulk. For indomethacin (IMC), an organic glass able to grow surface crystals in two polymorphs (α and γ), the growth front can be hundreds of nanometers above the glass surface. The process of surface crystal growth, meanwhile, is unperturbed by eliminating bulk material deeper than some threshold depth (ca. 300 nm for α IMC and less than 180 nm for γ IMC). As a growth strategy, the upward-lateral growth of surface crystals increases the system's surface energy, but can effectively take advantage of surface mobility and circumvent slow growth in the bulk.

8.
J Phys Chem B ; 125(32): 9052-9068, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34357766

RESUMO

When a liquid is cooled, progress down the energy landscape is arrested near the glass transition temperature Tg. In principle, lower energy states can be accessed by waiting for further equilibration, but the rough energy landscape of glasses quickly leads to kinetics on geologically slow time scales below Tg. Over the past decade, progress has been made probing deeper into the energy landscape via several techniques. By looking at bulk and surface diffusion, using layered deposition that promotes equilibration, imaging glass surfaces with faster dynamics below Tg, and optically exciting glasses, experiments have moved into a regime of ultrastable, low energy glasses that was difficult to access in the past. At the same time, both simulations and energy landscape theory based on a random first order transition (RFOT) have tackled systems that include surfaces, optical excitation, and interfacial dynamics. Here we review some of the recent experimental work, and how energy landscape theory illuminates glassy dynamics well below the glass transition temperature by making direct connections between configurational entropy, energy landscape barriers, and the resulting dynamics.


Assuntos
Vidro , Difusão , Cinética , Transição de Fase , Temperatura
9.
J Phys Chem Lett ; 10(13): 3536-3542, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31177780

RESUMO

We show that deposition rate substantially affects the anisotropic structure of thin glassy films produced by physical vapor deposition. Itraconazole, a glass-forming liquid crystal, was deposited at rates spanning 3 orders of magnitude over a 25 K range of substrate temperatures, and structure was characterized by ellipsometry and X-ray scattering. Both the molecular orientation and the spacing of the smectic layers obey deposition rate-substrate temperature superposition, such that lowering the deposition rate is equivalent to raising the substrate temperature. We identify two different surface relaxations that are responsible for structural order in the vapor-deposited glasses and find that the process controlling molecular orientation is accelerated by more than 3 orders of magnitude at the surface relative to the bulk. The identification of distinct surface processes responsible for anisotropic structural features in vapor-deposited glasses will enable more precise control over the structure of glassy materials used in organic electronics.

10.
Nat Mater ; 11(4): 267-8, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22437780
11.
ACS Cent Sci ; 3(5): 415-424, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573203

RESUMO

Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these "stable glasses" are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that the model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. These results suggest a novel structure-function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA