Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 239(0): 357-374, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35862189

RESUMO

Chalcopyrite Cu(In,Ga)Se2 (CIGSe) solar absorbers are renowned for delivering high solar power conversion efficiency despite containing high concentration of lattice defects amounting to copper deficiencies of several atomic percent. The unique ability to incorporate this deficiency without triggering decomposition (i.e. "tolerance to off-stoichiometry") is viewed by many as the key feature of CIGSe. In principle, this property could benefit any solar absorber, but remarkably little attention has been paid to it so far. In this study, we assess the tolerance to off-stoichiometry of thin-film photovoltaic materials by carrying out ab initio analysis of group-I-poor ordered defect compounds (ODCs) in the extended family of I-III-VI systems (where I = Cu, Ag, III = Al, Ga, In, and VI = S, Se, Te). We analyze convex hulls and structural evolution with respect to group-I content, link them with experimental phase diagrams, and determine two empirical principles for the future identification of solar energy materials with high tolerance to off-stoichiometry. Practical implications for the deposition of I-III-VI absorbers are also discussed in light of our computational results and recent experimental findings.

2.
Microsc Microanal ; 25(2): 532-538, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853031

RESUMO

Surface sulfurization of Cu(In,Ga)Se2 (CIGSe) absorbers is a commonly applied technique to improve the conversion efficiency of the corresponding solar cells, via increasing the bandgap towards the heterojunction. However, the resulting device performance is understood to be highly dependent on the thermodynamic stability of the chalcogenide structure at the upper region of the absorber. The present investigation provides a high-resolution chemical analysis, using energy dispersive X-ray spectrometry and laser-pulsed atom probe tomography, to determine the sulfur incorporation and chemical re-distribution in the absorber material. The post-sulfurization treatment was performed by exposing the CIGSe surface to elemental sulfur vapor for 20 min at 500°C. Two distinct sulfur-rich phases were found at the surface of the absorber exhibiting a layered structure showing In-rich and Ga-rich zones, respectively. Furthermore, sulfur atoms were found to segregate at the absorber grain boundaries showing concentrations up to ~7 at% with traces of diffusion outwards into the grain interior.

3.
Prog Photovolt ; 22(10): 1023-1029, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26300619

RESUMO

Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF2 coated with a thin atomic layer deposited Al2O3 layer, or direct current magnetron sputtering of Al2O3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al2O3/CIGS rear interface. (MgF2/)Al2O3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells.

4.
J Am Chem Soc ; 134(47): 19330-3, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23146047

RESUMO

Experimental proof is presented for a hitherto undetected solid-state reaction between the solar cell material Cu(2)ZnSn(S,Se)(4) (CZTS(e)) and the standard metallic back contact, molybdenum. Annealing experiments combined with Raman and transmission electron microscopy studies show that this aggressive reaction causes formation of MoS(2) and secondary phases at the CZTS|Mo interface during thermal processing. A reaction scheme is presented and discussed in the context of current state-of-the-art synthesis methods for CZTS(e). It is concluded that alternative back contacts will be important for future improvements in CZTS(e) quality.

5.
Ambio ; 41 Suppl 2: 112-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434436

RESUMO

Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.


Assuntos
Energia Solar , Eletricidade , Indústrias , Luz Solar
6.
Adv Sci (Weinh) ; 9(23): e2200848, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35726048

RESUMO

The chalcopyrite Cu(In,Ga)S2 has gained renewed interest in recent years due to the potential application in tandem solar cells. In this contribution, a combined theoretical and experimental approach is applied to investigate stable and metastable phases forming in CuInS2 (CIS) thin films. Ab initio calculations are performed to obtain formation energies, X-ray diffraction (XRD) patterns, and Raman spectra of CIS polytypes and related compounds. Multiple CIS structures with zinc-blende and wurtzite-derived lattices are identified and their XRD/Raman patterns are shown to contain overlapping features, which could lead to misidentification. Thin films with compositions from Cu-rich to Cu-poor are synthesized via a two-step approach based on sputtering from binary targets followed by high-temperature sulfurization. It is discovered that several CIS polymorphs are formed when growing the material with this approach. In the Cu-poor material, wurtzite CIS is observed for the first time in sputtered thin films along with chalcopyrite CIS and CuAu-ordered CIS. Once the wurtzite CIS phase has formed, it is difficult to convert into the stable chalcopyrite polymorph. CuIn5 S8 and NaInS2 accommodating In-excess are found alongside the CIS polymorphs. It is argued that the metastable polymorphs are stabilized by off-stoichiometry of the precursors, hence tight composition control is required.

7.
iScience ; 24(1): 101910, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376975

RESUMO

In this work, a trimetallic NiMoV catalyst is developed for the hydrogen evolution reaction and characterized with respect to structure, valence, and elemental distribution. The overpotential to drive a 10 mA cm-2 current density is lowered from 94 to 78 mV versus reversible hydrogen electrode by introducing V into NiMo. A scalable stand-alone system for solar-driven water splitting was examined for a laboratory-scale device with 1.6 cm2 photovoltaic (PV) module area to an up-scaled device with 100 cm2 area. The NiMoV cathodic catalyst is combined with a NiO anode in alkaline electrolyzer unit thermally connected to synthesized (Ag,Cu) (In,Ga)Se2 ((A)CIGS) PV modules. Performance of 3- and 4-cell interconnected PV modules, electrolyzer, and hydrogen production of the PV electrolyzer are examined between 25°C and 50°C. The PV-electrolysis device having a 4-cell (A)CIGS under 100 mW cm-2 illumination and NiMoV-NiO electrolyzer shows 9.1% maximum and 8.5% averaged efficiency for 100 h operation.

8.
ACS Appl Mater Interfaces ; 13(6): 7188-7199, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33534535

RESUMO

Silver alloying of Cu(In,Ga)Se2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to ∼60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to ∼20 ppm for films without Ag and up to ∼200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices.

9.
ACS Appl Energy Mater ; 4(1): 510-522, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33615157

RESUMO

High-end organic-inorganic lead halide perovskite semitransparent p-i-n solar cells for tandem applications use a phenyl-C61-butyric acid methyl ester (PCBM)/atomic layer deposition (ALD)-SnO x electron transport layer stack. Omitting the PCBM would be preferred for manufacturing, but has in previous studies on (FA,MA)Pb(Br,I)3 and (Cs,FA)Pb(Br,I)3 and in this study on Cs0.05FA0.79MA0.16PbBr0.51I2.49 (perovskite) led to poor solar cell performance because of a bias-dependent light-generated current. A direct ALD-SnO x exposure was therefore suggested to form a nonideal perovskite/SnO x interface that acts as a transport barrier for the light-generated current. To further investigate the interface formation during the initial ALD SnO x growth on the perovskite, the mass dynamics of monitor crystals coated by partial p-i-n solar cell stacks were recorded in situ prior to and during the ALD using a quartz crystal microbalance. Two major finds were made. A mass loss was observed prior to ALD for growth temperatures above 60 °C, suggesting the decomposition of the perovskite. In addition, a mostly irreversible mass gain was observed during the first exposure to the Sn precursor tetrakis(dimethylamino)tin(IV) that is independent of growth temperature and that disrupts the mass gain of the following 20-50 ALD cycles. The chemical environments of the buried interface were analyzed by soft and hard X-ray photoelectron spectroscopy for a sample with 50 ALD cycles of SnO x on the perovskite. Although measurements on the perovskite bulk below and the SnO x film above did not show chemical changes, additional chemical states for Pb, Br, and N as well as a decrease in the amount of I were observed in the interfacial region. From the analysis, these states and not the heating of the perovskite were concluded to be the cause of the barrier. This strongly suggests that the detrimental effects can be avoided by controlling the interfacial design.

10.
ACS Appl Mater Interfaces ; 9(35): 29707-29716, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28792724

RESUMO

The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH2)2, CH3NH3)Pb(I,Br)3 (FAPbI3:MAPbBr3) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnOx. Exposing the samples to the heat, the vacuum, and even the counter reactant of H2O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C2H5)2 either by itself or in combination with H2O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH3)2)4 does not seem to degrade the bulk of the perovskite film, and conformal SnOx films can successfully be grown on top of it using atomic layer deposition. Using this SnOx film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C70-butyric acid methyl ester. However, the devices with SnOx show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnOx films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnOx interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnOx growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

11.
ChemSusChem ; 10(19): 3810-3817, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28857493

RESUMO

Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al2 O3 underlayer for perovskite solar cells. The thickness of the Al2 O3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al2 O3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al2 O3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al2 O3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al2 O3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al2 O3 underlayers for flexible solar cells.


Assuntos
Óxido de Alumínio/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Titânio/química
12.
ACS Appl Mater Interfaces ; 8(28): 18600-7, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27356214

RESUMO

Formation of Na-containing surface compounds is an important phenomenon in the Cu2ZnSnS4 (CZTS) quaternary material synthesis for solar cell applications. Still, identification of these compounds and the understanding of their potential influence on buffer layer growth and device performance are scarce. In this work, we discovered that the evolution of Na-S(-O) compounds on the CZTS surface substantially affect the solution/CZTS interface during the chemical bath deposition of CdS buffer film. We showed that Na2S negatively affects the growth of CdS, and that this compound is likely to form on the CZTS surface after annealing. It was also demonstrated that the Na2S compound can be oxidized to Na2SO4 by air exposure of the annealed CZTS surface or be removed using water dipping instead of the commonly used KCN etching process, resulting in significantly better quality of the CdS layer. Lastly, 6.5% CZTS solar cells were fabricated with air exposure treatment without incorporation of the KCN etching process. This work provides new insight into the growth of the CdS/CZTS interface for solar cell applications and opens new possibilities for improving likewise Cd-free buffer materials that are grown with a similar chemical bath deposition process.

13.
Phys Rev Lett ; 97(14): 146403, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17155274

RESUMO

Photoelectron spectroscopy, optical characterization, and density functional calculations of ZnO1-xSx reveal that the valence-band (VB) offset E(v)(x) increases strongly for small S content, whereas the conduction-band edge E(c)(x) increases only weakly. This is explained as the formation of local ZnS-like bonds in the ZnO host, which mainly affects the VB edge and thereby narrows the energy gap: E(g)(x=0.28) approximately E(g)(ZnO)-0.6 eV. The low-energy absorption tail is a direct Gamma(v)-->Gamma(c) transition from ZnS-like VB. The VB bowing can be utilized to enhance p-type N(O) doping with lower formation energy DeltaH(f) and shallower acceptor state in the ZnO-like alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA