Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 511(1): 117-121, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30773257

RESUMO

The effect of corticosteroids on human physiology is complex and their use in tuberculosis patients remains controversial. In a high-throughput screening approach designed to discover virulence inhibitors, several corticosteroids were found to prevent cytolysis of fibroblasts infected with mycobacteria. Further experiments with Mycobacterium tuberculosis showed anti-cytolytic activity in the 10 nM range, but no effect on bacterial growth or survival in the absence of host cells at 20 µM. The results from a panel of corticosteroids with various affinities to the glucocorticoid- and mineralocorticoid receptors indicate that the inhibition of cytolysis most likely is mediated through the glucocorticoid receptor. Using live-imaging of M. tuberculosis-infected human monocyte-derived macrophages, we also show that corticosteroids to some extent control intracellular bacteria. In vitro systems with reduced complexity are to further study and understand the interactions between bacterial infection, immune defense and cell signaling.


Assuntos
Corticosteroides/farmacologia , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
2.
Sci Rep ; 11(1): 1523, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452380

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a major health threat listed among the top 10 causes of death worldwide. Treatment of multidrug-resistant Mtb requires use of additional second-line drugs that prolong the treatment process and result in higher death rates. Our team previously identified a 2-pyridone molecule (C10) that blocks tolerance to the first-line drug isoniazid at C10 concentrations that do not inhibit bacterial growth. Here, we discovered that the genes rv3160c and rv3161c are highly induced by C10, which led us to investigate them as potential targets. We show that Rv3160c acts as a TetR-like transcriptional repressor binding to a palindromic sequence located in the rv3161c promoter. We also demonstrate that C10 interacts with Rv3160c, inhibiting its binding to DNA. We deleted the rv3161c gene, coding for a putative oxygenase, to investigate its role in drug and stress sensitivity as well as C10 activity. This Δrv3161c strain was more tolerant to isoniazid and lysozyme than wild type Mtb. However, this tolerance could still be blocked by C10, suggesting that C10 functions independently of Rv3161c to influence isoniazid and lysozyme sensitivity.


Assuntos
Resistência Microbiana a Medicamentos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Isoniazida/farmacologia , Oxigenases/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Tetraciclina/farmacologia , Fatores de Transcrição/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
Sci Rep ; 9(1): 26, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631100

RESUMO

High-throughput screening facilities do not generally support biosafety level 3 organisms such as Mycobacterium tuberculosis. To discover not only antibacterials, but also virulence inhibitors with either bacterial or host cell targets, an assay monitoring lung fibroblast survival upon infection was developed and optimized for 384-plate format and robotic liquid handling. By using Mycobacterium marinum as surrogate organism, 28,000 compounds were screened at biosafety level 2 classification, resulting in 49 primary hits. Exclusion of substances with unfavourable properties and known antimicrobials resulted in 11 validated hits of which 7 had virulence inhibiting properties and one had bactericidal effect also in wild type Mycobacterium tuberculosis. This strategy to discover virulence inhibitors using a model organism in high-throughput screening can be a valuable tool for other researchers working on drug discovery against tuberculosis and other biosafety level 3 infectious agents.


Assuntos
Antibacterianos/isolamento & purificação , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/patogenicidade , Fatores de Virulência/antagonistas & inibidores , Sobrevivência Celular , Fibroblastos/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA