RESUMO
BACKGROUND: Inborn errors affecting components of the T-cell receptor signaling cascade cause combined immunodeficiency with various degrees of severity. Recently, homozygous variants in LCP2 were reported to cause pediatric onset of severe combined immunodeficiency with neutrophil, platelet, and T- and B-cell defects. OBJECTIVE: We sought to unravel the genetic cause of combined immunodeficiency and early-onset immune dysregulation in a 26-year-old man who presented with specific antibody deficiency, autoimmunity, and inflammatory bowel disease since early childhood. METHODS: The patient was subjected to whole-exome sequencing of genomic DNA and examination of blood neutrophils, platelets, and T and B cells. Expression levels of the Src homology domain 2-containing leukocyte protein of 76 kDa (SLP76) and tonic and ligand-induced PI3K signaling were evaluated by flow-cytometric detection of phosphorylated ribosomal protein S6 in B and T cells. RESULTS: Compound heterozygous missense variants were identified in LCP2, affecting the proline-rich repeat domain of SLP76 (p.P190R and p.R204W). The patient's total B- and T-cell numbers were within the normal range, as was platelet function. However, neutrophil function, numbers of unswitched and class-switched memory B cells, and serum IgA were decreased. Moreover, intracellular SLP76 protein levels were reduced in the patient's B cells, CD4+ and CD8+ T cells, and natural killer cells. Tonic and ligand-induced levels of phosphorylated ribosomal protein S6 and ligand-induced phosphorylated PLCγ1 were decreased in the patient's B cells and CD4+ and CD8+ T cells. CONCLUSIONS: Biallelic variants in LCP2 impair neutrophil function and T-cell and B-cell antigen-receptor signaling and can cause combined immunodeficiency with early-onset immune dysregulation, even in the absence of platelet defects.
Assuntos
Fosfatidilinositol 3-Quinases , Imunodeficiência Combinada Severa , Masculino , Criança , Humanos , Pré-Escolar , Adulto , Fosfatidilinositol 3-Quinases/genética , Linfócitos T CD8-Positivos , Ligantes , Proteína S6 Ribossômica/genética , Transdução de Sinais/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/diagnóstico , MutaçãoRESUMO
BACKGROUND: TCF3 is a transcription factor contributing to early lymphocyte differentiation. Germline monoallelic dominant negative and biallelic loss-of-function (LOF) null TCF3 mutations cause a fully penetrant severe immunodeficiency. We identified 8 individuals from 7 unrelated families with monoallelic LOF TCF3 variants presenting with immunodeficiency with incomplete clinical penetrance. OBJECTIVE: We sought to define TCF3 haploinsufficiency (HI) biology and its association with immunodeficiency. METHODS: Patient clinical data and blood samples were analyzed. Flow cytometry, Western blot analysis, plasmablast differentiation, immunoglobulin secretion, and transcriptional activity studies were conducted on individuals carrying TCF3 variants. Mice with a heterozygous Tcf3 deletion were analyzed for lymphocyte development and phenotyping. RESULTS: Individuals carrying monoallelic LOF TCF3 variants showed B-cell defects (eg, reduced total, class-switched memory, and/or plasmablasts) and reduced serum immunoglobulin levels; most but not all presented with recurrent but nonsevere infections. These TCF3 LOF variants were either not transcribed or translated, resulting in reduced wild-type TCF3 protein expression, strongly suggesting HI pathophysiology for the disease. Targeted RNA sequencing analysis of T-cell blasts from TCF3-null, dominant negative, or HI individuals clustered away from healthy donors, implying that 2 WT copies of TCF3 are needed to sustain a tightly regulated TCF3 gene-dosage effect. Murine TCF3 HI resulted in a reduction of circulating B cells but overall normal humoral immune responses. CONCLUSION: Monoallelic LOF TCF3 mutations cause a gene-dosage-dependent reduction in wild-type protein expression, B-cell defects, and a dysregulated transcriptome, resulting in immunodeficiency. Tcf3+/- mice partially recapitulate the human phenotype, underscoring the differences between TCF3 in humans and mice.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Haploinsuficiência , Síndromes de Imunodeficiência , Animais , Humanos , Camundongos , Linfócitos B , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunoglobulinas/genética , Síndromes de Imunodeficiência/genética , Linfócitos TRESUMO
Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.
Assuntos
Vacina BNT162 , COVID-19 , Adulto , Humanos , Células B de Memória , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Adenoviridae , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos AntiviraisRESUMO
Natural infection with SARS-CoV-2 induces a robust circulating memory B cell (Bmem) population, which remains stable in number at least 8 months post-infection despite the contraction of antibody levels after 1 month. Multiple vaccines have been developed to combat the virus. These include two new formulations, mRNA and adenoviral vector vaccines, which have varying efficacy rates, potentially related to their distinct capacities to induce humoral immune responses. The mRNA vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) elicit significantly higher serum IgG and neutralizing antibody levels than the adenoviral vector ChAdOx1 (AstraZeneca) and Ad26.COV2.S (Janssen) vaccines. However, all vaccines induce Spike- and RBD-specific Bmem, which are vital in providing long-lasting protection in the form of rapid recall responses to subsequent infections. Past and current SARS-CoV-2 variants of concern (VoC) have shown the capacity to escape antibody neutralization to varying degrees. A booster dose with an mRNA vaccine following primary vaccination restores antibody levels and improves the capacity of these antibodies and Bmem to bind viral variants, including the current VoC Omicron. Future experimental research will be essential to evaluate the durability of protection against VoC provided by each vaccine and to identify immune markers of protection to enable prognostication of people who are at risk of severe complications from COVID-19.
Assuntos
COVID-19 , Imunidade Humoral , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Ad26COVS1 , Vacina BNT162 , Células B de Memória , Vacinação , Anticorpos NeutralizantesRESUMO
Biallelic mutations in the genes encoding CD27 or its ligand CD70 underlie inborn errors of immunity (IEIs) characterized predominantly by Epstein-Barr virus (EBV)-associated immune dysregulation, such as chronic viremia, severe infectious mononucleosis, hemophagocytic lymphohistiocytosis (HLH), lymphoproliferation, and malignancy. A comprehensive understanding of the natural history, immune characteristics, and transplant outcomes has remained elusive. Here, in a multi-institutional global collaboration, we collected the clinical information of 49 patients from 29 families (CD27, n = 33; CD70, n = 16), including 24 previously unreported individuals and identified a total of 16 distinct mutations in CD27, and 8 in CD70, respectively. The majority of patients (90%) were EBV+ at diagnosis, but only â¼30% presented with infectious mononucleosis. Lymphoproliferation and lymphoma were the main clinical manifestations (70% and 43%, respectively), and 9 of the CD27-deficient patients developed HLH. Twenty-one patients (43%) developed autoinflammatory features including uveitis, arthritis, and periodic fever. Detailed immunological characterization revealed aberrant generation of memory B and T cells, including a paucity of EBV-specific T cells, and impaired effector function of CD8+ T cells, thereby providing mechanistic insight into cellular defects underpinning the clinical features of disrupted CD27/CD70 signaling. Nineteen patients underwent allogeneic hematopoietic stem cell transplantation (HSCT) prior to adulthood predominantly because of lymphoma, with 95% survival without disease recurrence. Our data highlight the marked predisposition to lymphoma of both CD27- and CD70-deficient patients. The excellent outcome after HSCT supports the timely implementation of this treatment modality particularly in patients presenting with malignant transformation to lymphoma.
Assuntos
Ligante CD27/deficiência , Doenças Genéticas Inatas , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/mortalidade , Doenças Genéticas Inatas/terapia , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/mortalidade , Síndromes de Imunodeficiência/terapia , Lactente , Masculino , Estudos Retrospectivos , Taxa de SobrevidaRESUMO
Since early 2020, the world has been embroiled in an ongoing viral pandemic with SARS-CoV-2 and emerging variants resulting in mass morbidity and an estimated 6 million deaths globally. The scientific community pivoted rapidly, providing unique and innovative means to identify infected individuals, technologies to evaluate immune responses to infection and vaccination, and new therapeutic strategies to treat infected individuals. Never before has immunology been so critically at the forefront of combatting a global pandemic. It has now become evident that not just antibody responses, but formation and durability of immune memory cells following vaccination are associated with protection against severe disease from SARS-CoV-2 infection. Furthermore, the emergence of variants of concern (VoC) highlight the need for immunological markers to quantify the protective capacity of Wuhan-based vaccines. Thus, harnessing and modulating the immune response is key to successful vaccination and treatment of disease. We here review the latest knowledge about immune memory generation and durability following natural infection and vaccination, and provide insights into the attributes of immune memory that may protect from emerging variants.
Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Memória Imunológica , Vacinação , PandemiasRESUMO
Variants in MAGT1 have been identified as the cause of an immune deficiency termed X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection and neoplasia (XMEN) disease. Here, we describe 2 cases of XMEN disease due to novel mutations in MAGT1, one of whom presented with classical features of XMEN disease and another who presented with a novel phenotype including probable CNS vasculitis, HHV-8 negative multicentric Castelman disease and severe molluscum contagiosum, thus highlighting the clinical diversity that may be seen in this condition. Peripheral blood immunophenotyping of these 2 patients, together with an additional 4 XMEN patients, revealed reduced NKG2D expression, impaired CD28 expression on CD8+ T cells, CD4+ T cell lymphopenia, an inverted CD4:CD8 ratio and decreased memory B cells. In addition, we showed for the first time alterations to the CD8+ T cell memory compartment, reduced CD56hi NK cells, MAIT and iNKT cells, as well as compromised differentiation of naïve CD4+ T cells into IL-21-producing Tfh-type cells in vitro. Both patients were treated with supplemental magnesium with limited benefit. However, one patient has undergone allogeneic haematopoietic stem cell transplant, with full donor chimerism and immune reconstitution. These results expand our understanding of the clinical and immunological phenotype in XMEN disease, adding to the current literature, which we further discuss here.
Assuntos
Proteínas de Transporte de Cátions/genética , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/fisiologia , Leucócitos Mononucleares/imunologia , Neoplasias/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Adulto , Diferenciação Celular , Criança , Quimerismo , Infecções por Vírus Epstein-Barr/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Memória Imunológica , Imunofenotipagem , Linfopenia , Magnésio/metabolismo , Masculino , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologiaRESUMO
BACKGROUND: Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphoinositide 3-kinase (PI3K), result in hyperactivation of the PI3K-AKT-mechanistic target of rapamycin pathway and underlie a novel inborn error of immunity. Affected subjects exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or cytomegalovirus infection, and increased incidence of B-cell lymphoproliferation, lymphoma, or both. Mechanisms underlying disease pathogenesis remain unknown. OBJECTIVE: Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in patients with PIK3CD GOF mutations, identify key molecules required for cell-mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this and other EBV-opathies. METHODS: We studied the consequences of PIK3CD GOF mutations on the generation, differentiation, and function of CD8+ T cells and natural killer (NK) cells, which are implicated in host defense against infection with herpesviruses, including EBV. RESULTS: PIK3CD GOF total and EBV-specific CD8+ T cells were skewed toward an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion and increased susceptibility to reactivation-induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF mutations. NK cells in patients with PIK3CD GOF mutations also exhibited perturbed expression of differentiation-associated molecules. Both CD8+ T and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, programmed death ligand 1/2, and CD70. CONCLUSIONS: PIK3CD GOF mutations aberrantly induce exhaustion, senescence, or both and impair cytotoxicity of CD8+ T and NK cells. These defects might contribute to clinical features of affected subjects, such as impaired immunity to herpesviruses and tumor surveillance.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Classe I de Fosfatidilinositol 3-Quinases , Infecções por Vírus Epstein-Barr , Mutação com Ganho de Função , Doenças Genéticas Inatas/imunologia , Herpesvirus Humano 4/imunologia , Células Matadoras Naturais/imunologia , Adolescente , Adulto , Idoso , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Senescência Celular/genética , Senescência Celular/imunologia , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos , Vigilância Imunológica/genética , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Gain-of-function (GOF) mutations in PIK3CD cause a primary immunodeficiency characterized by recurrent respiratory tract infections, susceptibility to herpesvirus infections, and impaired antibody responses. Previous work revealed defects in CD8+ T and B cells that contribute to this clinical phenotype, but less is understood about the role of CD4+ T cells in disease pathogenesis. OBJECTIVE: We sought to dissect the effects of increased phosphoinositide 3-kinase (PI3K) signaling on CD4+ T-cell function. METHODS: We performed detailed ex vivo, in vivo, and in vitro phenotypic and functional analyses of patients' CD4+ T cells and a novel murine disease model caused by overactive PI3K signaling. RESULTS: PI3K overactivation caused substantial increases in numbers of memory and follicular helper T (TFH) cells and dramatic changes in cytokine production in both patients and mice. Furthermore, PIK3CD GOF human TFH cells had dysregulated phenotype and function characterized by increased programmed cell death protein 1, CXCR3, and IFN-γ expression, the phenotype of a TFH cell subset with impaired B-helper function. This was confirmed in vivo in which Pik3cd GOF CD4+ T cells also acquired an aberrant TFH phenotype and provided poor help to support germinal center reactions and humoral immune responses by antigen-specific wild-type B cells. The increase in numbers of both memory and TFH cells was largely CD4+ T-cell extrinsic, whereas changes in cytokine production and TFH cell function were cell intrinsic. CONCLUSION: Our studies reveal that CD4+ T cells with overactive PI3K have aberrant activation and differentiation, thereby providing mechanistic insight into dysfunctional antibody responses in patients with PIK3CD GOF mutations.
Assuntos
Linfócitos T CD4-Positivos , Diferenciação Celular , Fosfatidilinositol 3-Quinases/genética , Animais , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Mutação com Ganho de Função , Humanos , Camundongos , FenótipoRESUMO
The role of CD4(+) T cells in the control of infectious pathogens is highly complex with a myriad of functions but how these T cells acquire differential functional potentiality remains poorly defined. Here we show that human cytomegalovirus (CMV)-specific CD4(+) T cells directed towards different viral antigens expressed predominantly TNF-α alone or TNF-α and IFN-γ. TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of T-box transcription factors T-bet with graded loss of Eomesodermin (Eomes) expression (T-bet(Hi)Eomes(Hi/Lo)) when compared with TNF-α(+) CD4(+) T cells expressing lower levels of both T-bet and Eomes (T-bet(-)Eomes(-)). Furthermore, TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of perforin and interleukin (IL)-2 and displayed a terminally differentiated phenotype (CCR7(-)CD27(-)CD45RA(-)CD57(+)CD62L(-)). In contrast, TNF-α(+) alone CMV-specific CD4(+) T cells were predominantly early-memory phenotype with a proportion of these cells displaying T memory stem-cell phenotype (CD95(+)CD45RA(+)CCR7(+)CD27(+)). In vitro stimulation of CMV-specific CD4(+) T cells with viral antigen in the presence of IL-12 was sufficient to dramatically change the transcriptional and functional profile of TNF-α(+) CD4(+) T cells, whereas TNF-α(+) and IFN-γ(+) CD4(+) T cells remained unaltered. These findings illustrate an intrinsic link between cytokine expression, transcriptional regulation and cellular differentiation, and their impact on functional plasticity of virus-specific CD4(+) T cells.
Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Citomegalovirus/imunologia , Regulação da Expressão Gênica/imunologia , Transcrição Gênica/imunologia , Adulto , Antígenos de Diferenciação/imunologia , Linfócitos T CD4-Positivos/citologia , Feminino , Perfilação da Expressão Gênica , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/imunologiaRESUMO
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
RESUMO
Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.
RESUMO
T cell surface CTLA4 sequesters the costimulatory ligands CD80 and CD86 on antigen-presenting cells (APCs) to prevent autoimmunity. Therapeutic immunosuppression by recombinant CTLA4-immunoglobulin (Ig) fusion proteins, including abatacept, is also attributed to CD80/CD86 blockade. Recent studies show that CTLA4-Ig binding to APC surface cis-CD80:PD-L1 complexes can release the inhibitory ligand PD-L1, but whether this contributes to T cell inhibition remains unclear. Here, we show that PD-L1 liberation by CTLA4-Ig is strictly limited, both in extent and context, relative to PD-L1-competing anti-CD80 antibodies. At APC surface CD80:PD-L1 ratios exceeding 2:1, CTLA4-Ig therapies fail to release PD-L1 regardless of their CD80 affinity. Additionally, introducing flexibility into CTLA4-Ig by modifying its rigid homodimer interface produces biologics that retain bivalent CD80 binding without dissociating cis-bound PD-L1. These findings demonstrate that CTLA4-Ig therapies liberate PD-L1 through a CD80 reorientation mechanism that imposes a strict context dependence to their PD-1 checkpoint agonism and resultant T cell inhibition.
Assuntos
Abatacepte , Antígeno B7-1 , Antígeno B7-H1 , Linfócitos T , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-1/metabolismo , Abatacepte/farmacologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Antígeno CTLA-4/metabolismo , Animais , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/efeitos dos fármacos , Imunoconjugados/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologiaRESUMO
Altered peptide antigens that enhance T-cell immunogenicity have been used to improve peptide-based vaccination for a range of diseases. Although this strategy can prime T-cell responses of greater magnitude, the efficacy of constituent T-cell clonotypes within the primed population can be poor. To overcome this limitation, we isolated a CD8(+) T-cell clone (MEL5) with an enhanced ability to recognize the HLA A*0201-Melan A(27-35) (HLA A*0201-AAGIGILTV) antigen expressed on the surface of malignant melanoma cells. We used combinatorial peptide library screening to design an optimal peptide sequence that enhanced functional activation of the MEL5 clone, but not other CD8(+) T-cell clones that recognized HLA A*0201-AAGIGILTV poorly. Structural analysis revealed the potential for new contacts between the MEL5 T-cell receptor and the optimized peptide. Furthermore, the optimized peptide was able to prime CD8(+) T-cell populations in peripheral blood mononuclear cell isolates from multiple HLA A*0201(+) individuals that were capable of efficient HLA A*0201(+) melanoma cell destruction. This proof-of-concept study demonstrates that it is possible to design altered peptide antigens for the selection of superior T-cell clonotypes with enhanced antigen recognition properties.
Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno HLA-A2/imunologia , Antígeno MART-1/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Apresentação de Antígeno , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Dicroísmo Circular , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Humanos , Cinética , Antígeno MART-1/química , Antígeno MART-1/metabolismo , Melanoma/imunologia , Melanoma/terapia , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ressonância de Plasmônio de SuperfícieRESUMO
CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.
Assuntos
Anticorpos/fisiologia , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citotoxicidade Imunológica , Antígenos HLA-A/química , Peptídeos/química , Receptores de Antígenos de Linfócitos T/deficiência , Anticorpos/metabolismo , Linfócitos T CD8-Positivos/citologia , Células Clonais , Antígenos HLA-A/imunologia , Antígeno HLA-A2 , Humanos , Imunofenotipagem , Ligantes , Peptídeos/análise , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Coloração e Rotulagem , Ressonância de Plasmônio de SuperfícieRESUMO
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Assuntos
Agamaglobulinemia , Imunodeficiência de Variável Comum , Humanos , Imunodeficiência de Variável Comum/diagnóstico , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/complicações , Mutação/genética , Fenótipo , Agamaglobulinemia/complicaçõesRESUMO
Improving T cell Ags by altering MHC anchor residues is a common strategy used to enhance peptide vaccines, but there has been little assessment of how such modifications affect TCR binding and T cell recognition. In this study, we use surface plasmon resonance and peptide-MHC tetramer binding at the cell surface to demonstrate that changes in primary peptide anchor residues can substantially and unpredictably alter TCR binding. We also demonstrate that the ability of TCRs to differentiate between natural and anchor-modified heteroclitic peptides distinguishes T cells that exhibit a strong preference for either type of Ag. Furthermore, we show that anchor-modified heteroclitic peptides prime T cells with different TCRs compared with those primed with natural Ag. Thus, vaccination with heteroclitic peptides may elicit T cells that exhibit suboptimal recognition of the intended natural Ag and, consequently, impaired functional attributes in vivo. Heteroclitic peptide-based immune interventions therefore require careful evaluation to ensure efficacy in the clinic.
Assuntos
Antígenos HLA-A/imunologia , Oligopeptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Citometria de Fluxo , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Mutação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Biblioteca de Peptídeos , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Ressonância de Plasmônio de Superfície , Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismoRESUMO
CD8(+) CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8 interaction by approximately 15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity.
Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Separação Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismoRESUMO
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.