Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Cell Sci ; 132(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189537

RESUMO

The binding of DNA-dependent protein kinase catalytic subunit (DNA-PKcs, also known as PRKDC) to Ku proteins at DNA double-strand breaks (DSBs) has long been considered essential for non-homologous end joining (NHEJ) repair, providing a rationale for use of DNA-PKcs inhibitors as cancer therapeutics. Given lagging clinical translation, we reexamined mechanisms and observed instead that DSB repair can proceed independently of DNA-PKcs. While repair of radiation-induced DSBs was blocked in cells expressing shRNAs targeting Ku proteins or other NHEJ core factors, DSBs were repaired on schedule despite targeting DNA-PKcs. Although we failed to observe a DSB repair defect, the γH2AX foci that formed at sites of DNA damage persisted indefinitely after irradiation, leading to cytokinesis failure and accumulation of binucleated cells. Following this mitotic slippage, cells with decreased DNA-PKcs underwent accelerated cellular senescence. We identified downregulation of ataxia-telangiectasia mutated kinase (ATM) as the critical role of DNA-PKcs in recovery from DNA damage, insofar as targeting ATM restored γH2AX foci resolution and cytokinesis. Considering the lack of direct impact on DSB repair and emerging links between senescence and resistance to cancer therapy, these results suggest reassessing DNA-PKcs as a target for cancer treatment.


Assuntos
Senescência Celular , Citoproteção , Reparo do DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/metabolismo , Mitose , Radiação Ionizante , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Aurora Quinase B/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinese/efeitos dos fármacos , Citocinese/efeitos da radiação , Citoproteção/efeitos dos fármacos , Citoproteção/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Histonas/metabolismo , Humanos , Células MCF-7 , Camundongos , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Pironas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Quinase 1 Polo-Like
2.
J Cell Biochem ; 116(4): 661-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25418288

RESUMO

The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitose , Imagem Óptica/métodos , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Fluorescência Verde , Humanos , Microscopia Confocal , Imagem com Lapso de Tempo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
3.
J Cell Biochem ; 114(11): 2493-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23744630

RESUMO

We have previously demonstrated that the ultraviolet (UV) light is effective against a variety of cancer cells in vivo as well as in vitro. In the present report, we imaged the DNA damage repair response of minimal cancer after UVC irradiation. DNA-damage repair response to UV irradiation was imaged on tumors growing in 3D culture and in superficial tumors grown in vivo. UV-induced DNA damage repair was imaged with GFP fused to the DNA damage response (DDR)-related chromatin-binding protein 53BP1 in MiaPaCa-2 human pancreatic cancer cells. Three-dimensional Gelfoam® histocultures and confocal imaging enabled 53BP1-GFP nuclear foci to be observed within 1 h after UVC irradiation, indicating the onset of DNA damage repair response. A clonogenic assay showed that UVC inhibited MiaPaCa-2 cell proliferation in a dose-dependent manner, while UVA and UVB showed little effect on cell proliferation. Induction of UV-induced 53BP1-GFP focus formation was limited up to a depth of 40 µm in 3D-culture of MiaPaCa-2 cells. The MiaPaCa-2 cells irradiated by UVC light in a skin-flap mouse model had a significant decrease of tumor growth compared to untreated controls. Our results also demonstrate that 53BP1-GFP is an imageable marker of UV-induced DNA damage repair response of minimal cancer and that UVC is a useful tool for the treatment of residual cancer since UVC can kill superficial cancer cells without damage to deep tissue.


Assuntos
Dano ao DNA/efeitos da radiação , Neoplasias/genética , Raios Ultravioleta , Animais , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Camundongos Nus
4.
J Cell Biochem ; 114(11): 2454-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23696238

RESUMO

Caffeine enhances the effect of certain anticancer drugs, but the mechanism of modulation is poorly understood. In this study, modulation of cisplatinum efficacy induced by caffeine was visualized at the subcellular level by real-time fluorescent-protein imaging. Mitotic and apoptotic changes were observed by imaging 143B human osteosarcoma dual-color cells, in which GFP is expressed in the nucleus and RFP is expressed in the cytoplasm. Modulation of the cell cycle was imaged using time-lapse imaging of HeLa cells expressing a fluorescent ubiquitination-based cell cycle indicator (FUCCI) in the nucleus. Clonogenic assays showed that caffeine increased the inhibition by cisplatinum on cell proliferation. Subcellular imaging demonstrated that cisplatinum decreased mitosis and induced apoptosis in 143B cells. The combination of cisplatinum and caffeine enhanced mitosis and subsequently increased apoptosis. Time-lapse imaging showed that cisplatinum strongly induced cell-cycle arrest in the S/G2 phase in HeLa-FUCCI cells. Caffeine overcame the cell-cycle arrest induced by cisplatinum, thereby increasing its efficacy, since cisplatinum is ineffective against quiescent cells. The data in this report indicate that caffeine modulates the cell cycle in cancer cells, thereby enhancing efficacy of cell-cycle-dependent anticancer drugs such as cisplatinum.


Assuntos
Apoptose/efeitos dos fármacos , Cafeína/farmacologia , Ciclo Celular/efeitos dos fármacos , Cisplatino/farmacologia , Mitose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Interações Medicamentosas , Humanos , Microscopia Confocal
5.
Mol Ther ; 20(5): 1046-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22334019

RESUMO

Radiotherapy offers an effective treatment for advanced cancer but local and distant failures remain a significant challenge. Here, we treated melanoma and pancreatic carcinoma in syngeneic mice with ionizing radiation (IR) combined with the poly(ADP-ribose) polymerase inhibitor (PARPi) veliparib to inhibit DNA repair and promote accelerated senescence. Based on prior work implicating cytotoxic T lymphocytes (CTLs) as key mediators of radiation effects, we discovered that senescent tumor cells induced by radiation and veliparib express immunostimulatory cytokines to activate CTLs that mediate an effective antitumor response. When these senescent tumor cells were injected into tumor-bearing mice, an antitumor CTL response was induced which potentiated the effects of radiation, resulting in elimination of established tumors. Applied to human cancers, radiation-inducible immunotherapy may enhance radiotherapy responses to prevent local recurrence and distant metastasis.


Assuntos
Benzimidazóis/farmacologia , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Melanoma Experimental/terapia , Neoplasias Pancreáticas/terapia , Radiossensibilizantes/farmacologia , Animais , Vacinas Anticâncer/imunologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Terapia Combinada , Citocinas/biossíntese , Citocinas/imunologia , Citotoxicidade Imunológica , Feminino , Humanos , Ativação Linfocitária , Melanoma Experimental/imunologia , Melanoma Experimental/mortalidade , Camundongos , Transplante de Neoplasias , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Inibidores de Poli(ADP-Ribose) Polimerases , Taxa de Sobrevida , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas
6.
J Clin Med ; 12(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37568464

RESUMO

The study aimed to assess clinical pharmacology patterns of prescribed and taken medications in older cardiovascular patients using electronic health records (EHRs) (n = 704) (2019-2022). Medscape Drug Interaction Checker was used to identify pairwise drug-drug interactions (DDIs). Prevalence rates of DDIs were 73.5% and 68.5% among taken and prescribed drugs, respectively. However, the total number of DDIs was significantly higher among the prescribed medications (p < 0.05). Serious DDIs comprised 16% and 7% of all DDIs among the prescribed and taken medications, respectively (p < 0.05). Median numbers of DDIs between the prescribed vs. taken medications were Me = 2, IQR 0-7 vs. Me = 3, IQR 0-7 per record, respectively. Prevalence of polypharmacy was significantly higher among the prescribed medications compared with that among the taken drugs (p < 0.05). Women were taking significantly more drugs and had higher prevalence of polypharmacy and DDIs (p < 0.05). No sex-related differences were observed in the list of prescribed medications. ICD code U07.1 (COVID-19, virus identified) was associated with the highest median DDI number per record. Further research is warranted to improve EHR structure, implement patient engagement in reporting adverse drug reactions, and provide genetic profiling of patients to avoid potentially serious DDIs.

7.
Cell Chem Biol ; 29(10): 1517-1531.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206753

RESUMO

Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies. In vitro, inhibiting TERT sensitized cells to chemotherapy and radiation. NU-1 delayed repair of double-strand breaks, resulting in persistent DNA damage signaling and cellular senescence. Although NU-1 alone did not impact growth of syngeneic CT26 tumors in BALB/c mice, it dramatically enhanced the effects of radiation, leading to immune-dependent tumor elimination. Tumors displayed persistent DNA damage, suppressed proliferation, and increased activated immune infiltrate. Our studies confirm TERT's role in limiting genotoxic effects of conventional therapy but also implicate TERT as a determinant of immune evasion and therapy resistance.


Assuntos
Tolerância a Radiação , Telomerase , Animais , Camundongos , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Telômero
8.
Cancer Immun ; 11: 2, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21714479

RESUMO

Many cancers escape host immunity without losing tumor-specific rejection antigens or MHC class I expression. This study tracks the evolution of one such cancer that developed in a mouse following exposure to ultraviolet light. The primary autochthonous tumor was not highly malignant and was rejected when transplanted into naïve immunocompetent mice. Neoplastic cells isolated from the primary tumor were susceptible to the growth-inhibitory effects of IFNγ in vitro, but expressed very low levels of MHC I antigen and were resistant to tumor-specific T cells unless they were first exposed to IFNγ. Serial passage of the primary tumor cells in vivo led to a highly aggressive variant that caused fast-growing tumors in normal mice. In vitro, the variant tumor cells showed increased resistance to the growth-inhibitory effects of IFNγ but expressed high levels of immunoproteasomes and MHC I molecules and were susceptible to tumor-specific T cells even without prior exposure to IFNγ.


Assuntos
Antígenos de Neoplasias/biossíntese , Regulação Neoplásica da Expressão Gênica/imunologia , Interferon gama/farmacologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes p53 , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Nus , Mutação , Neoplasias Experimentais/genética , Proteínas Recombinantes , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas
9.
Expert Opin Drug Saf ; 20(10): 1191-1206, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33970732

RESUMO

Introduction: The use of potentially inappropriate medications (PIM) is an alarming social risk factor in cardiovascular patients. PIM administration may result in iatrogenic disorders and adverse consequences may be attenuated by limiting PIM intake.Areas covered: The goal of this review article is to discuss the trends, risks, and concerns regarding PIM administration with focus on cardiovascular patients. To find data, we searched literature using electronic databases (Pubmed/Medline 1966-2021 and Web of Science 1975-2021). The data search terms were cardiovascular diseases, potentially inappropriate medication, potentially harmful drug-drug combination, potentially harmful drug-disease combination, drug interaction, deprescribing, and electronic health record.Expert opinion: Drugs for heart diseases are the most commonly prescribed medications in older individuals. Despite the availability of explicit and implicit PIM criteria, the incidence of PIM use in cardiovascular patients remains high ranging from 7 to 85% in different patient categories. Physician-induced disorders often occur when PIM is administered and adverse effects may be reduced by limiting PIM intake. Main strategies promising for addressing PIM use include deprescribing, implementation of systematic electronic records, pharmacist medication review, and collaboration among cardiologists, internists, geriatricians, clinical pharmacologists, pharmacists, and other healthcare professionals as basis of multidisciplinary assessment teams.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Prescrição Inadequada/tendências , Lista de Medicamentos Potencialmente Inapropriados/tendências , Antivirais/efeitos adversos , Fármacos Cardiovasculares/efeitos adversos , Interações Medicamentosas , Humanos , Prescrição Inadequada/efeitos adversos , Polimedicação , Medição de Risco , Fatores de Risco , Tratamento Farmacológico da COVID-19
10.
Int J Radiat Biol ; 85(5): 421-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19437244

RESUMO

PURPOSE: To determine the mechanisms of Signal Transducer and Activator of Transcription 1 (Stat1)-associated radioresistance developed by nu61 tumour selected in vivo by fractionated irradiation of the parental radiosensitive tumour SCC61. MATERIALS AND METHODS: Radioresistence of nu61 and SCC61 in vitro was measured by clonogenic assay. Apoptotic response of nu61 and SCC61 cells to genotoxic stress was examined using caspase-based apoptotic assays. Co-cultivation of carboxyfluorescein diacetate, succinimidyl ester (CFDE-SE)-labeled nu61 with un-labeled SCC61 was performed at 1:1 ratio. Production of interleukin-6, interleukin-8 and soluble receptor of interleukin 6 (IL6, IL8 and sIL6R) was measured using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS: Radioresistant nu61 was also resistant to interferon-gamma (IFNgamma) and the death ligands of tumour necrosis factor alpha receptor (TNFR) family when compared to SCC61. This combined resistance is due to an impaired apoptotic response in nu61. Relative to SCC61, nu61 produced more IL6, IL8 and sIL6R. Using Stat1 knock-downs we demonstrated that IL6 and IL8 production is Stat1-dependent. Treatment with neutralising antibodies to IL6 and IL8, but not to either cytokine alone sensitised nu61 to genotoxic stress induced apoptosis. CONCLUSION: Nu61, which over-expresses Stat1 pathway, is deficient in apoptotic response to ionising radiation and cytotoxic ligands. This resistance to apoptosis is associated with Stat1-dependent production of IL6 and IL8 and suppression of caspases 8, 9 and 3.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Interleucinas/metabolismo , Neoplasias/patologia , Tolerância a Radiação , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Citocinas/toxicidade , Citotoxinas/toxicidade , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Interferon gama/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neoplasias/genética , Radiação Ionizante , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
11.
Cancer Res ; 67(19): 9214-20, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909027

RESUMO

Elsewhere, we reported that multiple serial in vivo passage of a squamous cell carcinoma cells (SCC61) concurrent with ionizing radiation (IR) treatment resulted in the selection of radioresistant tumor (nu61) that overexpresses the signal transducer and activator of transcription 1 (Stat1)/IFN-dependent pathway. Here, we report that (a) the Stat1 pathway is induced by IR, (b) constitutive overexpression of Stat1 is linked with failure to transmit a cytotoxic signal by radiation or IFNs, (c) selection of parental cell line SCC61 against IFN-alpha and IFN-gamma leads to the same IR- and IFN-resistant phenotype as was obtained by IR selection, and (d) suppression of Stat1 by short hairpin RNA renders the IR-resistant nu61 cells radiosensitive to IR. We propose a model that transient induction of Stat1 by IFN, IR, or other stress signals activates cytotoxic genes and cytotoxic response. Constitutive overexpression of Stat1 on the other hand leads to the suppression of the cytotoxic response and induces prosurvival genes that, at high levels of Stat1, render the cells resistant to IR or other inducers of cell death.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Humanos , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , RNA Interferente Pequeno/genética , Tolerância a Radiação , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/biossíntese , Fator de Transcrição STAT1/genética , Transplante Heterólogo
12.
Mol Oncol ; 13(9): 1927-1943, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225926

RESUMO

Radioresistance is a major hurdle in the treatment of head and neck squamous cell carcinoma (HNSCC). Here, we report that concomitant treatment of HNSCCs with radiotherapy and mevalonate pathway inhibitors (statins) may overcome resistance. Proteomic profiling and comparison of radioresistant to radiosensitive HNSCCs revealed differential regulation of the mevalonate biosynthetic pathway. Consistent with this finding, inhibition of the mevalonate pathway by pitavastatin sensitized radioresistant SQ20B cells to ionizing radiation and reduced their clonogenic potential. Overall, this study reinforces the view that the mevalonate pathway is a promising therapeutic target in radioresistant HNSCCs.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Neoplasias/biossíntese , Proteômica , Quinolinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Ácido Mevalônico , Radiação Ionizante , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
13.
Mol Cancer Res ; 17(6): 1338-1350, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885991

RESUMO

The metabolic reprogramming associated with characteristic increases in glucose and glutamine metabolism in advanced cancer is often ascribed to answering a higher demand for metabolic intermediates required for rapid tumor cell growth. Instead, recent discoveries have pointed to an alternative role for glucose and glutamine metabolites as cofactors for chromatin modifiers and other protein posttranslational modification enzymes in cancer cells. Beyond epigenetic mechanisms regulating gene expression, many chromatin modifiers also modulate DNA repair, raising the question whether cancer metabolic reprogramming may mediate resistance to genotoxic therapy and genomic instability. Our prior work had implicated N-acetyl-glucosamine (GlcNAc) formation by the hexosamine biosynthetic pathway (HBP) and resulting protein O-GlcNAcylation as a common means by which increased glucose and glutamine metabolism can drive double-strand break (DSB) repair and resistance to therapy-induced senescence in cancer cells. We have examined the effects of modulating O-GlcNAcylation on the DNA damage response (DDR) in MCF7 human mammary carcinoma in vitro and in xenograft tumors. Proteomic profiling revealed deregulated DDR pathways in cells with altered O-GlcNAcylation. Promoting protein O-GlcNAc modification by targeting O-GlcNAcase or simply treating animals with GlcNAc protected tumor xenografts against radiation. In turn, suppressing protein O-GlcNAcylation by blocking O-GlcNAc transferase activity led to delayed DSB repair, reduced cell proliferation, and increased cell senescence in vivo. Taken together, these findings confirm critical connections between cancer metabolic reprogramming, DDR, and senescence and provide a rationale to evaluate agents targeting O-GlcNAcylation in patients as a means to restore tumor sensitivity to radiotherapy. IMPLICATIONS: The finding that the HBP, via its impact on protein O-GlcNAcylation, is a key determinant of the DDR in cancer provides a mechanistic link between metabolic reprogramming, genomic instability, and therapeutic response and suggests novel therapeutic approaches for tumor radiosensitization.


Assuntos
Acilação/genética , Proliferação de Células/genética , Senescência Celular/genética , Reparo do DNA/genética , Animais , Vias Biossintéticas/genética , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Epigênese Genética/genética , Feminino , Instabilidade Genômica/genética , Glucose/genética , Glutamina/genética , Células HEK293 , Hexosaminas/genética , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , N-Acetilglucosaminiltransferases/genética , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos
14.
Mol Cancer Ther ; 17(2): 407-418, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030460

RESUMO

Despite significant advances in combinations of radiotherapy and chemotherapy, altered fractionation schedules and image-guided radiotherapy, many cancer patients fail to benefit from radiation. A prevailing hypothesis is that targeting repair of DNA double strand breaks (DSB) can enhance radiation effects in the tumor and overcome therapeutic resistance without incurring off-target toxicities. Unrepaired DSBs can block cancer cell proliferation, promote cancer cell death, and induce cellular senescence. Given the slow progress to date translating novel DSB repair inhibitors as radiosensitizers, we have explored drug repurposing, a proven route to improving speed, costs, and success rates of drug development. In a prior screen where we tracked resolution of ionizing radiation-induced foci (IRIF) as a proxy for DSB repair, we had identified pitavastatin (Livalo), an HMG-CoA reductase inhibitor commonly used for lipid lowering, as a candidate radiosensitizer. Here, we report that pitavastatin and other lipophilic statins are potent inhibitors of DSB repair in breast and melanoma models both in vitro and in vivo When combined with ionizing radiation, pitavastatin increased persistent DSBs, induced senescence, and enhanced acute effects of radiation on radioresistant melanoma tumors. shRNA knockdown implicated HMG-CoA reductase, farnesyl diphosphate synthase, and protein farnesyl transferase in IRIF resolution, DSB repair, and senescence. These data confirm on-target activity of statins, although via inhibition of protein prenylation rather than cholesterol biosynthesis. In light of prior studies demonstrating enhanced efficacy of radiotherapy in patients taking statins, this work argues for clinical evaluation of lipophilic statins as nontoxic radiosensitizers to enhance the benefits of image-guided radiotherapy. Mol Cancer Ther; 17(2); 407-18. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."


Assuntos
Reparo do DNA/efeitos dos fármacos , Acil Coenzima A/farmacologia , Animais , Senescência Celular , Feminino , Humanos , Camundongos
15.
Int J Oncol ; 31(6): 1519-28, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17982679

RESUMO

TNFalpha was initially described as inducing necrotic death in tumors in vivo, and more recently as a cytokine that mediates cytoprotection and inflammation. The anti-tumor effects of TNFalpha are poorly characterized because TNFalpha-induced death of human tumor cells has largely been studied in the presence of agents that block transcription or protein synthesis. Also, most reports in model cell systems describe apoptosis within relatively early time points as the principal mode of cell death induced by TNFalpha. We investigated the cytotoxic effects of 10 ng/ml TNFalpha on human tumor cells of different histological types without concomitant exposure to these inhibitors. Eleven of 21 human tumor cell lines underwent TNFalpha-induced cell death which ranged from 41% to complete loss of viability. Only one cell line demonstrated caspase-dependent apoptosis within 24 h. Nine cell lines underwent death between 48 h and 21 days. Seven of these lines underwent caspase-3 independent death consistent with necrosis. One tumor line exhibited characteristics of senescence following TNFalpha exposure. Nine of 9 cell lines activated NF-kappaB following TNFalpha exposure by 24 h. In all cell lines studied, with the exception of the epidermoid carcinoma cell line that underwent early apoptosis, expression of one or more NF-kappaB target genes was demonstrated at 24-96 h. BMS-345541, a specific IKK inhibitor, increased TNFalpha killing in TNFalpha resistant tumor cell lines by increasing apoptosis, suggesting that inhibition of NF-kappaB may be an effective strategy to enhance the tumoricidal effects of TNFalpha.


Assuntos
Apoptose/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , NF-kappa B/fisiologia , Necrose , Neoplasias/patologia , Quinoxalinas/farmacologia
16.
Oncotarget ; 7(23): 33919-33, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129153

RESUMO

Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy.


Assuntos
Antibacterianos/farmacologia , Neoplasias da Mama/radioterapia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Cefalosporinas/farmacologia , Reposicionamento de Medicamentos , Radiossensibilizantes/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Cancer Res ; 14(2): 173-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26538285

RESUMO

UNLABELLED: Conventional wisdom ascribes metabolic reprogramming in cancer to meeting increased demands for intermediates to support rapid proliferation. Prior models have proposed benefits toward cell survival, immortality, and stress resistance, although the recent discovery of oncometabolites has shifted attention to chromatin targets affecting gene expression. To explore further effects of cancer metabolism and epigenetic deregulation, DNA repair kinetics were examined in cells treated with metabolic intermediates, oncometabolites, and/or metabolic inhibitors by tracking resolution of double-strand breaks (DSB) in irradiated MCF7 breast cancer cells. Disrupting cancer metabolism revealed roles for both glycolysis and glutaminolysis in promoting DSB repair and preventing accelerated senescence after irradiation. Targeting pathways common to glycolysis and glutaminolysis uncovered opposing effects of the hexosamine biosynthetic pathway (HBP) and tricarboxylic acid (TCA) cycle. Treating cells with the HBP metabolite N-acetylglucosamine (GlcNAc) or augmenting protein O-GlcNAcylation with small molecules or RNAi targeting O-GlcNAcase each enhanced DSB repair, while targeting O-GlcNAc transferase reversed GlcNAc's effects. Opposing the HBP, TCA metabolites including α-ketoglutarate blocked DSB resolution. Strikingly, DNA repair could be restored by the oncometabolite 2-hydroxyglutarate (2-HG). Targeting downstream effectors of histone methylation and demethylation implicated the PRC1/2 polycomb complexes as the ultimate targets for metabolic regulation, reflecting known roles for Polycomb group proteins in nonhomologous end-joining DSB repair. Our findings that epigenetic effects of cancer metabolic reprogramming may promote DNA repair provide a molecular mechanism by which deregulation of metabolism may not only support cell growth but also maintain cell immortality, drive therapeutic resistance, and promote genomic instability. IMPLICATIONS: By defining a pathway from deregulated metabolism to enhanced DNA damage response in cancer, these data provide a rationale for targeting downstream epigenetic effects of metabolic reprogramming to block cancer cell immortality and overcome resistance to genotoxic stress.


Assuntos
Reparo do DNA , Epigênese Genética , Glutamina/metabolismo , Glicólise , Neoplasias/metabolismo , Acetilglucosamina/farmacologia , Senescência Celular , DNA/efeitos da radiação , Instabilidade Genômica , Glicólise/efeitos dos fármacos , Humanos , Células MCF-7 , Neoplasias/genética , Interferência de RNA
18.
Anticancer Res ; 36(8): 3821-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27466483

RESUMO

BACKGROUND: The ability to image DNA repair in cancer cells after irradiation, as well as its inhibition by potential therapeutic agents, is important for the further development of effective cancer therapy. 53BP1 is a DNA repair protein that is overexpressed and forms foci when double-stranded DNA breaks occur in DNA. MATERIALS AND METHODS: The re-localization of green fluorescent protein (GFP) fused to the chromatin-binding domain of 53BP1 to form foci was imaged after UVC irradiation of breast and pancreatic cancer cells expressing 53BP1-GFP using confocal microscopy. RESULTS: During live-cell imaging, 53BP1-GFP focus formation was observed within 10 minutes after UVC irradiation. Most 53BP1 foci resolved by 100 minutes. To block UVC-induced double-strand break repair in cancer cells, poly(ADP-ribose) polymerase (PARP) was targeted with ABT-888 (veliparib). PARP inhibition markedly enhanced UVC-irradiation-induced persistence of 53BP1-foci, even beyond 100 minutes after UVC irradiation, and reduced proliferation of breast and pancreatic cancer cells. CONCLUSION: Confocal microscopy of 53BP1-GFP is a powerful method for imaging UVC-induced DNA damage and repair, as well as inhibition of repair.


Assuntos
Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/terapia , Poli(ADP-Ribose) Polimerase-1/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Benzimidazóis/administração & dosagem , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Proteínas de Fluorescência Verde/química , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fotoquimioterapia , Poli(ADP-Ribose) Polimerase-1/biossíntese , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/biossíntese , Raios Ultravioleta
19.
Oncogene ; 23(36): 6083-94, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15208670

RESUMO

Recently, we identified Insulinoma-Glucagonoma clone 20 (IG20) that can render cells more susceptible to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. In addition, it can slow cell proliferation, and enhance drug- and radiation-induced cell death. TNF-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in some cancer cells and render others susceptible to cotreatment with drugs and irradiation, with little or no effect on most normal cells. In this study, we investigated the potential of IG20 to enhance TRAIL-induced apoptosis and found that it can render cells more susceptible to TRAIL treatment through enhanced activation of caspases. Further, we showed that this effect can be suppressed by caspase inhibitors, p35 and CrmA, and a dominant-negative Fas-associated death domain-containing protein (DN-FADD). Results from colocalization and immunoprecipitation studies showed that IG20 can interact with TRAIL death receptors (DR), DR4 and DR5 and increase recruitment of FADD and caspase-8 into the TRAIL death-inducing signaling complex (DISC). These results indicate that IG20 is a novel protein that can enhance TRAIL-induced apoptosis by facilitating DISC formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Caspases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Glicoproteínas de Membrana/farmacologia , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Caspase 8 , Inibidores de Caspase , Inibidores de Cisteína Proteinase/farmacologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Proteína de Domínio de Morte Associada a Fas , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Complexos Multiproteicos , Mutação , Transporte Proteico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/análise , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Ligante Indutor de Apoptose Relacionado a TNF , Transcrição Gênica , Transfecção , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
20.
Oncogene ; 23(5): 1076-87, 2004 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-14716293

RESUMO

We identified seven putative splice variants of the human IG20 gene. Four variants namely, IG20, MADD, IG20-SV2 and DENN-SV are expressed in human tissues. While DENN-SV is constitutively expressed in all tissues, expression of IG20 appears to be regulated. Interestingly, overexpression of DENN-SV enhanced cell replication and resistance to treatments with TNFalpha, vinblastine, etoposide and gamma-radiation. In contrast, IG20 expression suppressed cell replication and increased susceptibility to the above treatments. Moreover, cells that were resistant and susceptible to TNFalpha-induced apoptosis exclusively expressed endogenous DENN-SV and IG20, respectively. When PA-1 ovarian cancer cells that are devoid of endogenous IG20 variant, but express higher levels of DENN-SV, were transfected with IG20, they showed reduced cell proliferation and increased susceptibility to apoptosis induced by TNFalpha, TRAIL and gamma-radiation. This indicated that overexpression of IG20 can override endogenous DENN-SV function. CrmA reversed the effects of IG20, but not DENN-SV. In contrast, dominant-negative-I-kappa B reversed the effects of DENN-SV, but not IG20, and showed that DENN-SV most likely exerted its effects through NFkappaB activation. Together, our data show that IG20 gene can play a novel and significant role in regulating cell proliferation, survival and death through alternative mRNA splicing.


Assuntos
Processamento Alternativo , Apoptose/efeitos dos fármacos , Variação Genética , Fatores de Troca do Nucleotídeo Guanina/genética , Antineoplásicos/farmacologia , Divisão Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/farmacologia , NF-kappa B/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA