Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(10): 3860-3872, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35792867

RESUMO

Altering plant water use efficiency (WUE) is a promising approach for achieving sustainable crop production in changing climate scenarios. Here, we show that WUE can be tuned by alleles of a single gene discovered in elite maize (Zea mays) breeding material. Genetic dissection of a genomic region affecting WUE led to the identification of the gene ZmAbh4 as causative for the effect. CRISPR/Cas9-mediated ZmAbh4 inactivation increased WUE without growth reductions in well-watered conditions. ZmAbh4 encodes an enzyme that hydroxylates the phytohormone abscisic acid (ABA) and initiates its catabolism. Stomatal conductance is regulated by ABA and emerged as a major link between variation in WUE and discrimination against the heavy carbon isotope (Δ13C) during photosynthesis in the C4 crop maize. Changes in Δ13C persisted in kernel material, which offers an easy-to-screen proxy for WUE. Our results establish a direct physiological and genetic link between WUE and Δ13C through a single gene with potential applications in maize breeding.


Assuntos
Ácido Abscísico , Zea mays , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Alelos , Isótopos de Carbono , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Zea mays/metabolismo
2.
Theor Appl Genet ; 134(6): 1663-1675, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575820

RESUMO

KEY MESSAGE: Carbon isotope discrimination is a promising trait for indirect screening for improved water use efficiency of C4 crops. In the context of a changing climate, drought is one of the major factors limiting plant growth and yield. Hence, breeding efforts are directed toward improving water use efficiency (WUE) as a key factor in climate resilience and sustainability of crop production. As WUE is a complex trait and its evaluation is rather resource consuming, proxy traits, which are easier to screen and reliably reflect variation in WUE, are needed. In C3 crops, a trait established to be indicative for WUE is the carbon isotopic composition (δ13C) of plant material, which reflects the preferential assimilation of the lighter carbon isotope 12C over 13C during photosynthesis. In C4 crops, carbon fixation is more complex and δ13C thus depends on many more factors than in C3 crops. Recent physiological and genetic studies indicate a correlation between δ13C and WUE also in C4 crops, as well as a colocalization of quantitative trait loci for the two traits. Moreover, significant intraspecific variation as well as a medium to high heritability of δ13C has been shown in some of the main C4 crops, such as maize, sorghum and sugarcane, indicating its potential for indirect selection and breeding. Further research on physiological, genetic and environmental components influencing δ13C is needed to support its application in improving WUE and making C4 crops resilient to climate change.


Assuntos
Isótopos de Carbono/análise , Mudança Climática , Produtos Agrícolas/genética , Melhoramento Vegetal , Secas , Locos de Características Quantitativas , Saccharum/genética , Sorghum/genética , Zea mays/genética
3.
Plant Cell Environ ; 43(2): 344-357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31762057

RESUMO

Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/metabolismo , Lipídeos/farmacologia , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Aquaporinas/metabolismo , Transporte Biológico , Hordeum/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Prolina/metabolismo , Transcriptoma , Água/metabolismo
4.
Theor Appl Genet ; 132(1): 53-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30244394

RESUMO

KEY MESSAGE: A genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed. We combined genetic, phenomic, and physiological approaches to understand the relationship between growth, stomatal conductance, water use efficiency, and carbon isotope composition in maize (Zea mays L.). Using near-isogenic lines derived from a maize introgression library, we analysed the effects of a genomic region previously identified as affecting carbon isotope composition. We show stability of trait expression over several years of field trials and demonstrate in the phenotyping platform Phenodyn that the same genomic region also influences the sensitivity of leaf growth to evaporative demand and soil water potential. Our results suggest that the studied genomic region affecting carbon isotope discrimination also harbours quantitative trait loci playing a role in maize drought sensitivity possibly via stomatal behaviour and development. We propose that the observed phenotypes collectively originate from altered stomatal conductance, presumably via abscisic acid.


Assuntos
Isótopos de Carbono/análise , Secas , Água/fisiologia , Zea mays/genética , Zea mays/fisiologia , Cromossomos de Plantas/genética , Fenótipo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Locos de Características Quantitativas , Estresse Fisiológico
5.
Anal Biochem ; 553: 24-27, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29777680

RESUMO

The plant hormone abscisic acid (ABA) regulates many processes, including response to drought, seed dormancy and abscission of leaves and fruits. For maintenance of ABA homeostasis, catabolism of ABA by 8'-hydroxylation and subsequent cyclisation to phaseic acid (PA) is crucial. However, detection of ABA 8'-hydroxylation activity is tedious. We present a simple and rapid method for detection of ABA 8'-hydroxylase activity by cloning cDNAs of interest and expressing the respective protein in yeast. Upon addition of ABA, PA is formed and subsequently quantified in the yeast cell culture supernatant by heart cutting 2D-HPLC or GC-MS.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Saccharomyces cerevisiae/enzimologia , Ciclização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA