Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nucleic Acids Res ; 52(12): 6964-6976, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38142462

RESUMO

BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.


Assuntos
Proteína BRCA2 , DNA de Cadeia Simples , Ligação Proteica , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Animais , Camundongos , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Instabilidade Cromossômica , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Dano ao DNA , Mutação de Sentido Incorreto , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Linhagem Celular Tumoral , Mitomicina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Complexo de Endopeptidases do Proteassoma
2.
EMBO J ; 40(7): e106018, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33634895

RESUMO

The BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD-box RNA helicase DDX5 as a BRCA2-interacting protein. DDX5 associates with DNA-RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA-RNA hybrid-unwinding activity of DDX5 helicase. An impaired BRCA2-DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2-T207A, reduces the association of DDX5 with DNA-RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA-RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.


Assuntos
Proteína BRCA2/metabolismo , RNA Helicases DEAD-box/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA2/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Quebras de DNA de Cadeia Dupla , Células HEK293 , Humanos , Ácidos Nucleicos Heteroduplexes , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 113(13): 3515-20, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976601

RESUMO

In somatic cells, BRCA2 is needed for RAD51-mediated homologous recombination. The meiosis-specific DNA strand exchange protein, DMC1, promotes the formation of DNA strand invasion products (joint molecules) between homologous molecules in a fashion similar to RAD51. BRCA2 interacts directly with both human RAD51 and DMC1; in the case of RAD51, this interaction results in stimulation of RAD51-promoted DNA strand exchange. However, for DMC1, little is known regarding the basis and functional consequences of its interaction with BRCA2. Here we report that human DMC1 interacts directly with each of the BRC repeats of BRCA2, albeit most tightly with repeats 1-3 and 6-8. However, BRC1-3 bind with higher affinity to RAD51 than to DMC1, whereas BRC6-8 bind with higher affinity to DMC1, providing potential spatial organization to nascent filament formation. With the exception of BRC4, each BRC repeat stimulates joint molecule formation by DMC1. The basis for this stimulation is an enhancement of DMC1-ssDNA complex formation by the stimulatory BRC repeats. Lastly, we demonstrate that full-length BRCA2 protein stimulates DMC1-mediated DNA strand exchange between RPA-ssDNA complexes and duplex DNA, thus identifying BRCA2 as a mediator of DMC1 recombination function. Collectively, our results suggest unique and specialized functions for the BRC motifs of BRCA2 in promoting homologous recombination in meiotic and mitotic cells.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Trifosfato de Adenosina/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Proteínas de Ciclo Celular/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Humanos , Hidrólise , Técnicas In Vitro , Meiose/genética , Modelos Biológicos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
4.
J Biol Chem ; 289(31): 21360-73, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942739

RESUMO

γ-Tubulin is an important cell division regulator that arranges microtubule assembly and mitotic spindle formation. Cytosolic γ-tubulin nucleates α- and ß-tubulin in a growing microtubule by forming the ring-shaped protein complex γTuRC. Nuclear γ-tubulin also regulates S-phase progression by moderating the activities of E2 promoter-binding factors. The mechanism that regulates localization of γ-tubulin is currently unknown. Here, we demonstrate that the human Ser/Thr kinase SadB short localizes to chromatin and centrosomes. We found that SadB-mediated phosphorylation of γ-tubulin on Ser(385) formed chromatin-associated γ-tubulin complexes that moderate gene expression. In this way, the C-terminal region of γ-tubulin regulates S-phase progression. In addition, chromatin levels of γ-tubulin were decreased by the reduction of SadB levels or expression of a non-phosphorylatable Ala(385)-γ-tubulin but were enhanced by expression of SadB, wild-type γ-tubulin, or a phosphomimetic Asp(385)-γ-tubulin mutant. Our results demonstrate that SadB kinases regulate the cellular localization of γ-tubulin and thereby control S-phase progression.


Assuntos
Núcleo Celular/metabolismo , Proteínas Quinases/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Expressão Gênica/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Quinases/química , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/fisiologia
5.
Hum Mutat ; 35(2): 151-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24323938

RESUMO

Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may help establish a direct correlation with cancer predisposition. Therefore, alternative ways of predicting the pathogenicity of these variants are urgently needed. Since BRCA2 is a protein involved in important cellular mechanisms such as DNA repair, replication, and cell cycle control, functional assays have been developed that exploit these cellular activities to explore the impact of the variants on protein function. In this review, we summarize assays developed and currently utilized for studying missense variants in BRCA2. We specifically depict details of each assay, including variants of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant on cancer risk.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Genes BRCA2 , Técnicas Genéticas , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Animais , Proteína BRCA2/fisiologia , Neoplasias da Mama/diagnóstico , Ciclo Celular , Reparo do DNA , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Neoplasias Ovarianas/diagnóstico , Reprodutibilidade dos Testes
6.
J Biol Chem ; 287(21): 17241-17247, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22493456

RESUMO

In various tumors inactivation of growth control is achieved by interfering with the RB1 signaling pathway. Here, we describe that RB1 and γ-tubulin proteins moderate each other's expression by binding to their respective gene promoters. Simultaneous reduction of RB1 and γ-tubulin protein levels results in an E2F1-dependent up-regulation of apoptotic genes such as caspase 3. We report that in various tumors types, there is an inverse correlation between the expression levels of γ-tubulin and RB1 and that in tumor cell lines with a nonfunctioning RB1, reduction of γ-tubulin protein levels leads to induction of apoptosis. Thus, the RB1/γ-tubulin signal network can be considered as a new target for cancer treatment.


Assuntos
Apoptose , Neoplasias/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Tubulina (Proteína)/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/genética , Neoplasias/terapia , Proteína do Retinoblastoma/genética , Tubulina (Proteína)/genética
7.
Methods Mol Biol ; 2153: 115-126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840776

RESUMO

DNA double-strand breaks (DSBs) are among the most toxic lesions. This type of DNA damage is repaired by two major pathways, homologous recombination (HR), operating only in S/G2 cell-cycle phases and nonhomologous end joining (NHEJ) which is operative throughout the cell cycle. Because HR is a template-directed repair, it is generally less prone to errors and/or translocations than NHEJ.The HR pathway involves several effector proteins and regulators that modulate the efficiency of repair and limit the repair outside S/G2 phase. Some of the genes coding for these proteins are frequently mutated in human diseases such as cancer, and pathogenic mutations or variants identified in patients often alter the HR proficiency of the cells.This chapter describes a cell-based gene-targeting reporter assay in human cells to evaluate the repair of a site-specific DSB by HR . In it, a promoter-less fluorescent protein is encoded in a plasmid flanked by two homology arms directed to a safe-harbour locus in the genome. The expression of the fluorescent protein is driven by the promoter of the endogenous locus enabling to quantify the efficiency of HR by flow cytometry. This approach can be used to determine the requirement of certain proteins, protein domains, or protein modifications for HR . It can also be used to functionally evaluate variants of the genes encoding these proteins such as BRCA1, BRCA2, RAD51C, and PALB2; which may help assess their pathogenicity. Here, we use the homologous recombination mediator BRCA2 to illustrate the assay.


Assuntos
Proteína BRCA2/genética , Recombinação Homóloga , Neoplasias/genética , Plasmídeos/genética , Linhagem Celular Tumoral , Citometria de Fluxo , Fase G2 , Marcação de Genes , Genes Reporter , Humanos , Reparo de DNA por Recombinação , Fase S , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
8.
Cancers (Basel) ; 13(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34359619

RESUMO

The breast cancer susceptibility gene BRCA2 encodes a multifunctional protein required for the accurate repair of DNA double-strand breaks and replicative DNA lesions. In addition, BRCA2 exhibits emerging important roles in mitosis. As a result, mutations in BRCA2 may affect chromosomal integrity in multiple ways. However, many of the BRCA2 mutations found in breast cancer patients and their families are single amino acid substitutions, sometimes unique, and their relevance in cancer risk remains difficult to assess. In this review, we focus on three recent reports that investigated variants of uncertain significance (VUS) located in the N-terminal region of BRCA2. In this framework, we make the case for how the functional evaluation of VUS can be a powerful genetic tool not only for revealing novel aspects of BRCA2 function but also for re-evaluating cancer risk. We argue that other functions beyond homologous recombination deficiency or "BRCAness" may influence cancer risk. We hope our discussion will help the reader appreciate the potential of these functional studies in the prevention and diagnostics of inherited breast and ovarian cancer. Moreover, these novel aspects in BRCA2 function might help find new therapeutic strategies.

9.
Cell Cycle ; 20(8): 731-741, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33691600

RESUMO

Chromosomal instability is a hallmark of cancer. The tumor suppressor protein BRCA2 performs an important role in the maintenance of genome integrity particularly in interphase; as a mediator of homologous recombination DNA repair pathway, it participates in the repair of DNA double-strand breaks, inter-strand crosslinks and replicative DNA lesions. BRCA2 also protects stalled replication forks from aberrant degradation. Defects in these functions lead to structural chromosomal aberrations. BRCA2 is a large protein containing highly disordered regions that are heavily phosphorylated particularly in mitosis. The functions of these modifications are getting elucidated and reveal emerging activities in chromosome alignment, chromosome segregation and abscission during cell division. Defects in these activities result in numerical chromosomal aberrations. In addition to BRCA2, other factors of the DNA damage response (DDR) participate in mitosis in close association with cell cycle kinases and phosphatases suggesting that the maintenance of genome integrity functions of these factors extends beyond DNA repair. Here we will discuss the regulation of BRCA2 functions through phosphorylation by cell cycle kinases particularly in mitosis, and illustrate with some examples how BRCA2 and other DDR proteins partially rewire their interactions, essentially via phosphorylation, to fulfill mitotic specific functions that ensure chromosome stability.


Assuntos
Proteína BRCA2/metabolismo , Instabilidade Cromossômica/fisiologia , Cromossomos/metabolismo , Reparo do DNA/fisiologia , Animais , Proteína BRCA2/química , Proteína BRCA2/genética , Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/fisiologia , Humanos , Mitose/fisiologia , Fosforilação/fisiologia , Estrutura Secundária de Proteína
10.
J Transl Med ; 8: 78, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20727170

RESUMO

BACKGROUND: We recently demonstrated that increased expression of the RNA-binding protein RBM3 is associated with a favourable prognosis in breast cancer. The aim of this study was to examine the prognostic value of RBM3 mRNA and protein expression in epithelial ovarian cancer (EOC) and the cisplatin response upon RBM3 depletion in a cisplatin-sensitive ovarian cancer cell line. METHODS: RBM3 mRNA expression was analysed in tumors from a cohort of 267 EOC cases (Cohort I) and RBM3 protein expression was analysed using immunohistochemistry (IHC) in an independent cohort of 154 prospectively collected EOC cases (Cohort II). Kaplan Meier analysis and Cox proportional hazards modelling were applied to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS). Immunoblotting and IHC were used to examine the expression of RBM3 in a cisplatin-resistant ovarian cancer cell line A2780-Cp70 and its cisplatin-responsive parental cell line A2780. The impact of RBM3 on cisplatin response in EOC was assessed using siRNA-mediated silencing of RBM3 in A2780 cells followed by cell viability assay and cell cycle analysis. RESULTS: Increased RBM3 mRNA expression was associated with a prolonged RFS (HR = 0.64, 95% CI = 0.47-0.86, p = 0.003) and OS (HR = 0.64, 95% CI = 0.44-0.95, p = 0.024) in Cohort I. Multivariate analysis confirmed that RBM3 mRNA expression was an independent predictor of a prolonged RFS, (HR = 0.61, 95% CI = 0.44-0.84, p = 0.003) and OS (HR = 0.62, 95% CI = 0.41-0.95; p = 0.028) in Cohort I. In Cohort II, RBM3 protein expression was associated with a prolonged OS (HR = 0.53, 95% CI = 0.35-0.79, p = 0.002) confirmed by multivariate analysis (HR = 0.61, 95% CI = 0.40-0.92, p = 0.017). RBM3 mRNA and protein expression levels were significantly higher in the cisplatin sensitive A2780 cell line compared to the cisplatin resistant A2780-Cp70 derivative. siRNA-mediated silencing of RBM3 expression in the A2780 cells resulted in a decreased sensitivity to cisplatin as demonstrated by increased cell viability and reduced proportion of cells arrested in the G2/M-phase. CONCLUSIONS: These data demonstrate that RBM3 expression is associated with cisplatin sensitivity in vitro and with a good prognosis in EOC. Taken together these findings suggest that RBM3 may be a useful prognostic and treatment predictive marker in EOC.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteínas de Ligação a RNA/genética , Anticorpos Antineoplásicos/imunologia , Especificidade de Anticorpos/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , Análise de Sobrevida
11.
Nat Commun ; 11(1): 1819, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286328

RESUMO

The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2 bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1. Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule interactions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair function, with important consequences on chromosome stability. These findings may explain in part the aneuploidy observed in BRCA2-mutated tumors.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Aneuploidia , Neoplasias da Mama/genética , Segregação de Cromossomos , Feminino , Variação Genética , Células HeLa , Recombinação Homóloga , Humanos , Cinética , Cinetocoros , Mitose , Simulação de Acoplamento Molecular , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Quinase 1 Polo-Like
12.
Methods Enzymol ; 600: 479-511, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458771

RESUMO

Homologous recombination (HR) is an essential pathway to restart stalled replication forks, repair spontaneous DNA double-strand breaks, and generate genetic diversity. Together with genetic studies in model organisms, the development of purification protocols and biochemical assays has allowed investigators to begin to understand how the complex machinery of HR functions. At the core of the HR process is the recombination enzyme RecA in bacteria or RAD51 and DMC1 in eukaryotes. The main steps of HR can be reconstituted in vitro and involve: (1) The formation of a ssDNA-RAD51 complex into a helical structure termed the nucleoprotein filament after one DNA strand has been resected at the site of the break. (2) The homologous DNA pairing with an intact copy of the damaged chromatid to form a joint molecule also called displacement loop (D-loop). (3) The exchange of DNA strands and de novo DNA synthesis to restore the damaged/lost DNA. (4) The resolution of joint molecules by nucleolytic cleavage. The human tumor suppressor BRCA2 is a mediator of HR as it actively facilitates the DNA transactions of the recombination proteins RAD51 and DMC1 in a variety of ways: It stabilizes ssDNA-RAD51/DMC1 nucleoprotein filaments. It limits the assembly of RAD51 on dsDNA. It facilitates the replacement of replication protein A by RAD51. The result of these activities is a net increase of DNA strand exchange products as observed in vitro. Here, we describe some of the biochemical assays used to dissect the mediator activities of BRCA2.


Assuntos
Proteína BRCA2/metabolismo , DNA de Cadeia Simples/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Reparo de DNA por Recombinação , Proteína BRCA2/química , Proteína BRCA2/isolamento & purificação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Ágar/métodos , Eletroforese em Gel de Poliacrilamida/instrumentação , Eletroforese em Gel de Poliacrilamida/métodos , Ensaio de Desvio de Mobilidade Eletroforética/instrumentação , Rad51 Recombinase/química , Rad51 Recombinase/isolamento & purificação , Rad51 Recombinase/metabolismo , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodos , Especificidade por Substrato
13.
Oncotarget ; 9(25): 17334-17348, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29707112

RESUMO

Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.

14.
Cancer Res ; 77(11): 2789-2799, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28283652

RESUMO

Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G>A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G>A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G>T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Idoso , Substituição de Aminoácidos , Animais , Estudos de Casos e Controles , Feminino , Genótipo , Mutação em Linhagem Germinativa , Humanos , Camundongos , Mutação de Sentido Incorreto , Risco
15.
Nat Commun ; 7: 12813, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628236

RESUMO

BRCA2 tumour-suppressor protein is well known for its role in DNA repair by homologous recombination (HR); assisting the loading of RAD51 recombinase at DNA double-strand breaks. This function is executed by the C-terminal DNA binding domain (CTD) which binds single-stranded (ss)DNA, and the BRC repeats, which bind RAD51 and modulate its assembly onto ssDNA. Paradoxically, analysis of cells resistant to DNA damaging agents missing the CTD restore HR proficiency, suggesting another domain may take over its function. Here, we identify a region in the N terminus of BRCA2 that exhibits DNA binding activity (NTD) and provide evidence for NTD promoting RAD51-mediated HR. A missense variant detected in breast cancer patients located in the NTD impairs HR stimulation on dsDNA/ssDNA junction containing substrates. These findings shed light on the function of the N terminus of BRCA2 and have implications for the evaluation of breast cancer variants.


Assuntos
Proteína BRCA2/metabolismo , Recombinação Homóloga , Rad51 Recombinase/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/genética , DNA/metabolismo , Células HEK293 , Humanos
16.
Transl Oncol ; 4(4): 212-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21804916

RESUMO

The RNA-binding motif protein 3 (RBM3) was initially discovered as a putative cancer biomarker based on its differential expression in various cancer forms in the Human Protein Atlas (HPA). We previously reported an association between high expression of RBM3 and prolonged survival in breast and epithelial ovarian cancer (EOC). Because the function of RBM3 has not been fully elucidated, the aim of this study was to use gene set enrichment analysis to identify the underlying biologic processes associated with RBM3 expression in a previously analyzed EOC cohort (cohort 1, n = 267). This revealed an association between RBM3 expression and several cellular processes involved in the maintenance of DNA integrity. RBM3-regulated genes were subsequently screened in the HPA to select for putative prognostic markers, and candidate proteins were analyzed in the ovarian cancer cell line A2780, whereby an up-regulation of Chk1, Chk2, and MCM3 was demonstrated in siRBM3-treated cells compared to controls. The prognostic value of these markers was assessed at the messenger RNA level in cohort 1 and the protein level in an independent EOC cohort (cohort 2, n = 154). High expression levels of Chk1, Chk2, and MCM3 were associated with a significantly shorter survival in both cohorts, and phosphorylated Chk2 was an adverse prognostic marker in cohort 2. These results uncover a putative role for RBM3 in DNA damage response, which might, in part, explain its cisplatin-sensitizing properties and good prognostic value in EOC. Furthermore, it is demonstrated that Chk1, Chk2, and MCM3 are poor prognostic markers in EOC.

17.
Cancer Res ; 68(12): 4559-70, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559500

RESUMO

Serine/arginine (SR) protein-specific kinase (SRPK), a family of cell cycle-regulated protein kinases, phosphorylate SR domain-containing proteins in nuclear speckles and mediate the pre-mRNA splicing. However, the physiologic roles of this event in cell cycle are incompletely understood. Here, we show that SRPK2 binds and phosphorylates acinus, an SR protein essential for RNA splicing, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not A2 up-regulation. Acinus S422D, an SRPK2 phosphorylation mimetic, enhances cyclin A1 transcription, whereas acinus S422A, an unphosphorylatable mutant, blocks the stimulatory effect of SRPK2. Ablation of acinus or SRPK2 abrogates cyclin A1 expression in leukemia cells and arrest cells at G(1) phase. Overexpression of acinus or SRPK2 increases leukemia cell proliferation. Furthermore, both SRPK2 and acinus are overexpressed in some human acute myelogenous leukemia patients and correlate with elevated cyclin A1 expression levels, fitting with the oncogenic activity of cyclin A1 in leukemia. Thus, our findings establish a molecular mechanism by which SR splicing machinery regulates cell cycle and contributes to leukemia tumorigenesis.


Assuntos
Proliferação de Células , Ciclina A/metabolismo , Leucemia/enzimologia , Leucemia/patologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Medula Óssea/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Ciclina A/genética , Ciclina A1 , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Proteínas Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt , Saccharomyces cerevisiae , Serina/química , Serina/genética , Células Tumorais Cultivadas , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA