Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 45(10): 4619-4626, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30047160

RESUMO

PURPOSE: The ability to monitor intrafractional tumor motion is essential for radiation therapy of thoracic and abdominal tumors. This study aims to develop a method to track lung tumor motion using intrafractional continuous ultrasound (US) and periodic cone-beam projection images (CBPI). METHODS: Time-sequenced b-mode US and CBPI data were extracted from the data acquired with the Clarity® and XVI platforms on an Elekta linac, respectively. The data were synchronized through a video capture card (VCE-PRO, IMPERX Inc.) which was triggered by the XVI system. In this way, a system was configured to allow real-time acquisition of the diaphragm position synchronized with periodic acquisition of the lung tumor position. Feasibility of the system was demonstrated by acquiring synchronized data on an in-house motion platform with embedded spheres of different materials and US images of the diaphragm on 5 volunteers of various body sizes. Finally, ultrasound b-mode images and CBPI were also acquired simultaneously from 3 lung cancer patients. RESULTS: Diaphragm motion monitoring under free breathing (FB) was successful with intracostal US imaging. We observed that diaphragm visualization decreased with the increase in the body size of the volunteer. The US system was able to track the motion as small as 2 mm in the phantom. The intrafractional CBPI acquired during VMAT delivery was successfully synchronized with US acquisition in a phantom study. Collected patient data showed a significant correlation between diaphragm motion, an internal surrogate monitored by US, and the tumor motion in superior-inferior (SI) direction monitored by XVI (P Ë‚ 0.0001). CONCLUSIONS: The feasibility of real-time lung tumor motion tracking in SI direction with continuous ultrasound and periodic CBPI was demonstrated. The real-time estimation of the target position from the two streams for lung cancer patients would enable respiration gating or tracking during SBRT.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Movimento , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico , Estudos de Viabilidade , Humanos , Neoplasias Pulmonares/fisiopatologia , Imagens de Fantasmas , Respiração , Fatores de Tempo , Ultrassonografia
2.
Med Phys ; 43(9): 5252, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27587056

RESUMO

PURPOSE: Substantial intrafraction organ motion during radiation therapy (RT) for pancreatic cancer is well recognized as a major limiting factor for accurate delivery of RT. The aim of this work is to determine the feasibility of monitoring the intrafractional motion of the pancreas or surrounding structures using ultrasound for RT delivery. METHODS: Transabdominal ultrasound (TAUS) and 4DCT data were acquired on ten pancreatic cancer patients during radiation therapy process in a prospective study. In addition, TAUS and MRI were collected for five healthy volunteers. The portal vein (PV) and the head of the pancreas (HP) along with other structures were contoured on these images. Volume changes, distance between the HP and PV, and motion difference between the HP and PV were measured to examine whether PV can be used as a motion surrogate for HP. TAUS images were acquired and processed using a research version of the Clarity autoscan ultrasound system (CAUS). Motion monitoring was performed with the ultrasound probe mounted on an arm fixed to the couch. Video segments of the monitoring sessions were captured. RESULTS: On TAUS, PV is better visualized than HP. The measured mean volume deviation for all patients for the HP and PV was 1.4 and 0.6 ml, respectively. The distance between the HP and PV was close to a constant with 0.22 mm mean deviation throughout the ten breathing phases. The mean of the absolute motion difference for all patients was 1.7 ± 0.8 mm in LR, 1.5 ± 0.5 mm in AP, and 2.3 ± 0.7 mm in SI, suggesting that the PV is a good surrogate for HP motion estimation. By using this surrogate, the HP motion tracking using TAUS was demonstrated. CONCLUSIONS: Large intrafractional organ motion due to respiratory and/or bowel motion is a limiting factor in administering curative radiation doses to pancreatic tumors. The authors investigate the use of real-time ultrasound to track pancreas motion. Due to the poor visibility of the pancreas head on an ultrasound image, the portal vein is identified as a surrogate. The authors have demonstrated the feasibility of tracking HP motion through the localization of the PV using TAUS. This will potentially allow real-time tracking of intrafractional motion to justify small PTV-margins and to account for unusual motions, thus, improving normal tissue sparing.


Assuntos
Fracionamento da Dose de Radiação , Movimento , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Radioterapia Guiada por Imagem , Estudos de Viabilidade , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pancreáticas/fisiopatologia , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA