Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 156(16): 164908, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490007

RESUMO

We study the dynamics of pure oleic acid and grafted oleic acid synthesized by decomposing iron oleate into oleic acid grafted iron oxide nanoparticles. Our quasielastic neutron scattering study shows that oleic acid dominantly performs translational diffusion at room temperature. On the other hand, in nanocomposites, constraints imposed by grafting and crowding of neighboring chains restrict the grafted oleic acid to uniaxial rotation. Interestingly, it also manifests mobility in grafted oleic acid below the crystallization temperature of pure oleic acid. The data from grafted oleic acid could be effectively described using a uniaxial rotational diffusion model with an additional elastic scattering contribution. This kind of elastic scattering arises due to the restricted bond mobility and increases with decreasing temperature. The radius of rotation obtained from the fitted data agrees very well with the geometry of the molecule and grafting density. These results open possibilities of research on the confined surfactant systems, which could be analyzed using the approach described here.


Assuntos
Nêutrons , Ácido Oleico , Difusão , Rotação , Temperatura
2.
Angew Chem Int Ed Engl ; 60(32): 17539-17546, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156739

RESUMO

The defined assembly of nanoparticles in polymer matrices is an important precondition for next-generation functional materials. Here we demonstrate that a defined three-dimensional nanoparticle assembly within the unit cells can be realized by directly linking the nanoparticles to block copolymers. We show that for a range of nearly symmetric to unsymmetric block copolymers there are only two formed structures, a hexagonal lattice of P6/mmm-symmetry, where the nanoparticles are located in 1D-arrays within the cylindrical domains, and a cubic lattice of Im3m-symmetry, where the nanoparticles are located in the octahedral voids of a BCC-lattice, corresponding to the structure of ferrite steel. We observe the block length ratio and thus the interfacial curvature to be the most important parameter determining the lattice type. This is rationalized in terms of minimal chain extension such that domain topologies with large positive curvature are highly preferred. Already volume fractions of only one percent are sufficient to destabilize a lamellar structure and favor the formation of highly curved interfaces. The study thus demonstrates how nanoparticles can be located on well-defined positions in three-dimensional unit cells of block copolymer nanocomposites. This opens the way to functional 3D-nanocomposites where the nanoparticles need to be located on defined matrix positions.

3.
Nanoscale ; 16(3): 1291-1303, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38131194

RESUMO

The magnetic properties of spinel nanoparticles can be controlled by synthesizing particles of a specific shape and size. The synthesized nanorods, nanodots and cubic nanoparticles have different crystal planes selectively exposed on the surface. The surface effects on the static magnetic properties are well documented, while their influence on spin waves dispersion is still being debated. Our ability to manipulate spin waves using surface and defect engineering in magnetic nanoparticles is the key to designing magnonic devices. We synthesized cubic and spherical nanoparticles of a classical antiferromagnetic material Co3O4 to study the shape and size effects on their static and dynamic magnetic proprieties. Using a combination of experimental methods, we probed the magnetic and crystal structures of our samples and directly measured spin wave dispersions using inelastic neutron scattering. We found a weak, but unquestionable, increase in exchange interactions for the cubic nanoparticles as compared to spherical nanoparticle and bulk powder reference samples. Interestingly, the exchange interactions in spherical nanoparticles have bulk-like properties, despite a ferromagnetic contribution from canted surface spins.

4.
ACS Nano ; 15(1): 840-856, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33393769

RESUMO

Heat-up synthesis routes are very commonly used for the controlled large-scale production of semiconductor and magnetic nanoparticles with narrow size distribution and high crystallinity. To obtain fundamental insights into the nucleation and growth kinetics is particularly demanding, because these procedures involve heating to temperatures above 300 °C. We designed a sample environment to perform in situ SAXS/WAXS experiments to investigate the nucleation and growth kinetics of iron oxide nanoparticles during heat-up synthesis up to 320 °C. The analysis of the growth curves for varying heating rates, Fe/ligand ratios, and plateau temperatures shows that the kinetics proceeds via a characteristic sequence of three phases: an induction Phase I, a final growth Phase III, and an intermediate Phase II, which can be divided into an early phase with the evolution and subsequent dissolution of an amorphous transient state, and a late phase, where crystalline particle nucleation and aggregation occurs. We extended classical nucleation and growth theory to account for an amorphous transient state and particle aggregation during the nucleation and growth phases. We find that this nonclassical theory is able to quantitatively describe all measured growth curves. The model provides fundamental insights into the underlying kinetic processes especially in the complex Phase II with the occurrence of a transient amorphous state, the nucleation of crystalline primary particles, particle growth, and particle aggregation proceeding on overlapping time scales. The described in situ experiments together with the extension of the classical nucleation and growth model highlight the two most important features of nonclassical nucleation and growth routes, i.e., the formation of intermediate or transient species and particle aggregation processes. They thus allow us to quantitatively understand, predict, and control nanoparticle nucleation and growth kinetics for a wide range of nanoparticle systems and synthetic procedures.

5.
Adv Mater ; 33(24): e2008683, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960040

RESUMO

Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of ​the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.


Assuntos
Compostos Férricos , Nanopartículas de Magnetita , Tamanho da Partícula
6.
ACS Nano ; 8(6): 6114-22, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24870392

RESUMO

We demonstrate polymer ligand exchange to be an efficient method to control steric stabilization and compatibilization of nanocrystals. A rational design of polymer binding groups and ligand exchange conditions allows to attach polymer brushes with grafting densities >1 nm(-2) to inorganic nanocrystals for nearly any nanocrystal/polymer combination using only a few types of binding groups. We demonstrate the potential of the method as an alternative to established grafting-from and grafting-to routes in considerably increasing the stabilization of inorganic nanocrystals in solution, to prepare completely miscible polymer nanocomposites with a controllable distance between nanoparticles, and to induce and control aggregation into percolation networks in polymeric matrices for a variety of different nanocrystal/polymer combinations. A dense attachment of very short polymer ligands is possible enabling to prepare ordered nanoparticle monolayers with a distance or pitch of only 7.2 nm, corresponding to a potential magnetic storage density of 12.4 Tb/in(2). Not only end-functionalized homopolymers, but also commercially available copolymers with functional comonomers can be used for stable ligand exchange, demonstrating the versatility and broad potential of the method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA