Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Traffic ; 18(1): 29-43, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27743426

RESUMO

K2P 5.1 channels (also called TASK-2 or Kcnk5) have already been shown to be relevant in the pathophysiology of autoimmune disease because they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P 5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P 5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P 5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14-3-3 proteins as novel binding partners of K2P 5.1 channels. We show that a non-classical 14-3-3 consensus motif (R-X-X-pT/S-x) at the channel's C-terminus allows the binding between K2P 5.1 and 14-3-3. The mutant K2P 5.1/S266A diminishes the protein-protein interaction and reduces the amplitude of membrane currents. Application of a non-peptidic 14-3-3 inhibitor (BV02) significantly reduces the number of wild-type channels in the plasma membrane, whereas the drug has no effect on the trafficking of the mutated channel. Furthermore, blocker application reduces T-cell effector functions. Taken together, we demonstrate that 14-3-3 interacts with K2P 5.1 and plays an important role in channel trafficking.


Assuntos
Proteínas 14-3-3/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico/fisiologia , Regulação para Cima/fisiologia
2.
Brain Behav Immun ; 59: 103-117, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27569659

RESUMO

Myelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state. In this study, we sought to characterize the time course of sensory and behavioral alterations induced by de- and remyelination to establish a rational for the use of remyelination strategies. By taking advantage of animal models of general and focal demyelination, we tested the consequences of myelin loss on the functionality of the auditory thalamocortical system: a well-studied neuronal network consisting of both white and gray matter regions. We found that general demyelination was associated with a permanent loss of the tonotopic cortical organization in vivo, and the inability to induce tone-frequency-dependent conditioned behaviors, a status persisting after remyelination. Targeted, focal lysolecithin-induced lesions in the white matter fiber tract, but not in the gray matter regions of cortex, were fully reversible at the morphological, functional and behavioral level. These findings indicate that remyelination of white and gray matter lesions have a different functional regeneration potential, with the white matter being able to regain full functionality while cortical gray matter lesions suffer from permanently altered network function. Therefore therapeutic interventions aiming for remyelination have to consider both region- and time-dependent strategies.


Assuntos
Córtex Cerebral/fisiopatologia , Doenças Desmielinizantes/fisiopatologia , Rede Nervosa/fisiopatologia , Imunidade Adaptativa , Animais , Comportamento Animal , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/psicologia , Eletrodos Implantados , Substância Cinzenta/patologia , Lisofosfatidilcolinas , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Recuperação de Função Fisiológica , Sensação , Substância Branca/patologia
3.
Eur J Immunol ; 45(9): 2602-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140335

RESUMO

Natural killer (NK) cells are a subset of cytotoxic lymphocytes that recognize and kill tumor- and virus-infected cells without prior stimulation. Killing of target cells is a multistep process including adhesion to target cells, formation of an immunological synapse, and polarization and release of cytolytic granules. The role of distinct potassium channels in this orchestrated process is still poorly understood. The current study reveals that in addition to the voltage-gated KV 1.3 and the calcium-activated KCa 3.1 channels, human NK cells also express the two-pore domain K2 P channel TASK2 (TWIK-related acid-sensitive potassium channel). Expression of Task2 varies among NK-cell subsets and depends on their differentiation and activation state. Despite its different expression in TASK2(high) CD56(bright) CD16(-) and TASK2(low) CD56(dim) CD16(+) NK cells, TASK2 is involved in cytokine-induced proliferation and cytolytic function of both subsets. TASK2 is crucial for leukocyte functional antigen (LFA-1) mediated adhesion of both resting and cytokine-activated NK cells to target cells, an early step in killing of target cells. With regard to the following mechanism, TASK2 plays a role in release of cytotoxic granules by resting, but not IL-15-induced NK cells. Taken together, our data exhibit two-pore potassium channels as important players in NK-cell activation and effector function.


Assuntos
Citotoxicidade Imunológica , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Canais de Potássio de Domínios Poros em Tandem/imunologia , Antígeno CD56/genética , Antígeno CD56/imunologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica , Células HEK293 , Humanos , Interleucina-15/farmacologia , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Cultura Primária de Células , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais , Análise de Célula Única
4.
J Autoimmun ; 67: 90-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26584738

RESUMO

The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.


Assuntos
Autoimunidade , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Cloreto de Sódio na Dieta/administração & dosagem , Animais , Autoimunidade/efeitos dos fármacos , Biomarcadores , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Humanos , Imunofenotipagem , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Fenótipo
5.
J Theor Biol ; 404: 236-250, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27288542

RESUMO

Although various types of ion channels are known to have an impact on human T cell effector functions, their exact mechanisms of influence are still poorly understood. The patch clamp technique is a well-established method for the investigation of ion channels in neurons and T cells. However, small cell sizes and limited selectivity of pharmacological blockers restrict the value of this experimental approach. Building a realistic T cell computer model therefore can help to overcome these kinds of limitations as well as reduce the overall experimental effort. The computer model introduced here was fed off ion channel parameters from literature and new experimental data. It is capable of simulating the electrophysiological behaviour of resting and activated human CD4(+) T cells under basal conditions and during extracellular acidification. The latter allows for the very first time to assess the electrophysiological consequences of tissue acidosis accompanying most forms of inflammation.


Assuntos
Simulação por Computador , Doença , Fenômenos Eletrofisiológicos , Saúde , Linfócitos T/citologia , Linfócitos T CD4-Positivos/metabolismo , Cálcio/metabolismo , Cátions , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Potenciais da Membrana , Modelos Biológicos , Potássio/metabolismo , Medula Espinal/metabolismo
6.
J Physiol ; 593(1): 127-44, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556792

RESUMO

KEY POINTS: During the behavioural states of sleep and wakefulness thalamocortical relay neurons fire action potentials in high frequency bursts or tonic sequences, respectively. The modulation of specific K(+) channel types, termed TASK and TREK, allows these neurons to switch between the two modes of activity. In this study we show that the signalling lipids phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG), which are components of their membrane environment, switch on and shut off TREK and TASK channels, respectively. These channel modulations contribute to a better understanding of the molecular basis of the effects of neurotransmitters such as ACh which are released by the brainstem arousal system. The present report introduces PIP2 and DAG as new elements of signal transduction in the thalamus. The activity of two-pore domain potassium channels (K2P ) regulates the excitability and firing modes of thalamocortical (TC) neurons. In particular, the inhibition of two-pore domain weakly inwardly rectifying K(+) channel (TWIK)-related acid-sensitive K(+) (TASK) channels and TWIK-related K(+) (TREK) channels, as a consequence of the stimulation of muscarinic ACh receptors (MAChRs) which are coupled to phosphoinositide-specific phospholipase C (PLCß), induces a shift from burst to tonic firing. By using a whole cell patch-clamp approach, the contribution of the membrane-bound second messenger molecules phosphatidylinositol 4,5-bisphosphate (PIP2 ) and diacylglycerol (DAG) acting downstream of PLCß was probed. The standing outward current (ISO ) was used to monitor the current through TASK and TREK channels in TC neurons. By exploiting different manoeuvres to change the intracellular PIP2 level in TC neurons, we here show that the scavenging of PIP2 (by neomycin) results in an increased muscarinic effect on ISO whereas increased availability of PIP2 (inclusion to the patch pipette; histone-based carrier) decreased muscarinic signalling. The degree of muscarinic inhibition specifically depends on phosphatidylinositol phosphate (PIP) and PIP2 but no other phospholipids (phosphatidic acid, phosphatidylserine). The use of specific blockers revealed that PIP2 is targeting TREK but not TASK channels. Furthermore, we demonstrate that the inhibition of TASK channels is induced by the application of the DAG analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG). Under current clamp conditions the activation of MAChRs and PLCß as well as the application of OAG resulted in membrane depolarization, while PIP2 application via histone carrier induced a hyperpolarization. These results demonstrate a differential role of PIP2 and DAG in K2P channel modulation in native neurons which allows a fine-tuned inhibition of TREK (via PIP2 depletion) and TASK (via DAG) channels following MAChR stimulation.


Assuntos
Diglicerídeos/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Tálamo/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Neurônios/fisiologia , Ratos Long-Evans , Fosfolipases Tipo C/fisiologia
7.
Pflugers Arch ; 467(5): 959-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25482672

RESUMO

Members of the two-pore domain K(+) channel (K2P) family are increasingly recognized as being potential targets for therapeutic drugs and could play a role in the diagnosis and treatment of neurologic disorders. Their broad and diverse expression pattern in pleiotropic cell types, importance in cellular function, unique biophysical properties, and sensitivity toward pathophysiologic parameters represent the basis for their involvement in disorders of the central nervous system (CNS). This review will focus on multiple sclerosis (MS) and stroke, as there is growing evidence for the involvement of K2P channels in these two major CNS disorders. In MS, TASK1-3 channels are expressed on T lymphocytes and are part of a signaling network regulating Ca(2+)- dependent pathways that are mandatory for T cell activation, differentiation, and effector functions. In addition, TASK1 channels are involved in neurodegeneration, resulting in autoimmune attack of CNS cells. On the blood-brain barrier, TREK1 channels regulate immune cell trafficking under autoinflammatory conditions. Cerebral ischemia shares some pathophysiologic similarities with MS, including hypoxia and extracellular acidosis. On a cellular level, K2P channels can have both proapoptotic and antiapoptotic effects, either promoting neurodegeneration or protecting neurons from ischemic cell death. TASK1 and TREK1 channels have a neuroprotective effect on stroke development, whereas TASK2 channels have a detrimental effect on neuronal survival under ischemic conditions. Future research in preclinical models is needed to provide a more detailed understanding of the contribution of K2P channel family members to neurologic disorders, before translation to the clinic is an option.


Assuntos
Sistema Nervoso Central/metabolismo , Isquemia/metabolismo , Esclerose Múltipla/metabolismo , Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Humanos
8.
Pflugers Arch ; 467(5): 895-905, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25346156

RESUMO

The thalamocortical system is characterized by two fundamentally different activity states, namely synchronized burst firing and tonic action potential generation, which mainly occur during the behavioral states of sleep and wakefulness, respectively. The switch between the two firing modes is crucially governed by the bidirectional modulation of members of the K2P channel family, namely tandem of P domains in a weakly inward rectifying K(+) (TWIK)-related acid-sensitive K(+) (TASK) and TWIK-related K(+) (TREK) channels, in thalamocortical relay (TC) neurons. Several physicochemical stimuli including neurotransmitters, protons, di- and multivalent cations as well as clinically used drugs have been shown to modulate K2P channels in these cells. With respect to modulation of these channels by G-protein-coupled receptors, PLCß plays a unique role with both substrate breakdown and product synthesis exerting important functions. While the degradation of PIP2 leads to the closure of TREK channels, the production of DAG induces the inhibition of TASK channels. Therefore, TASK and TREK channels were found to be central elements in the control of thalamic activity modes. Since research has yet focused on identifying the muscarinic pathway underling the modulation of TASK and TREK channels in TC neurons, future studies should address other thalamic cell types and members of the K2P channel family.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Tálamo/fisiologia , Animais , Humanos , Sono/fisiologia
9.
Mol Cell Neurosci ; 61: 110-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24914823

RESUMO

The polygenic origin of generalized absence epilepsy results in dysfunction of ion channels that allows the switch from physiological asynchronous to pathophysiological highly synchronous network activity. Evidence from rat and mouse models of absence epilepsy indicates that altered Ca(2+) channel activity contributes to cellular and network alterations that lead to seizure activity. Under physiological circumstances, high voltage-activated (HVA) Ca(2+) channels are important in determining the thalamic firing profile. Here, we investigated a possible contribution of HVA channels to the epileptic phenotype using a rodent genetic model of absence epilepsy. In this study, HVA Ca(2+) currents were recorded from neurons of three different thalamic nuclei that are involved in both sensory signal transmission and rhythmic-synchronized activity during epileptic spike-and-wave discharges (SWD), namely the dorsal part of the lateral geniculate nucleus (dLGN), the ventrobasal thalamic complex (VB) and the reticular thalamic nucleus (NRT) of epileptic Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) and non-epileptic August Copenhagen Irish (ACI) rats. HVA Ca(2+) current densities in dLGN neurons were significantly increased in epileptic rats compared with non-epileptic controls while other thalamic regions revealed no differences between the strains. Application of specific channel blockers revealed that the increased current was carried by L-type Ca(2+) channels. Electrophysiological evidence of increased L-type current correlated with up-regulated mRNA and protein expression of a particular L-type channel, namely Cav1.3, in dLGN of epileptic rats. No significant changes were found for other HVA Ca(2+) channels. Moreover, pharmacological inactivation of L-type Ca(2+) channels results in altered firing profiles of thalamocortical relay (TC) neurons from non-epileptic rather than from epileptic rats. While HVA Ca(2+) channels influence tonic and burst firing in ACI and WAG/Rij differently, it is discussed that increased Cav1.3 expression may indirectly contribute to increased robustness of burst firing and thereby the epileptic phenotype of absence epilepsy.


Assuntos
Canais de Cálcio/metabolismo , Epilepsia/patologia , Potenciais da Membrana/fisiologia , Núcleos Talâmicos/metabolismo , Regulação para Cima/fisiologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Albuterol/análogos & derivados , Albuterol/farmacologia , Animais , Animais Recém-Nascidos , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Fenômenos Biofísicos/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia/genética , Epilepsia/fisiopatologia , Imunossupressores/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Taxa de Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar , Xinafoato de Salmeterol , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Núcleos Talâmicos/patologia , Regulação para Cima/genética
10.
Biochim Biophys Acta ; 1828(2): 699-707, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23041580

RESUMO

Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K(2P)) channels in the RVD of human CD4(+) T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K(2P)5.1 and K(2P)18.1 as the most important K(2P) channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K(2P)5.1 and K(2P)18.1 on the RVD was comparable to that of K(V)1.3. K(2P)9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K(2P) channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/química , Linfócitos T/metabolismo , Biofísica/métodos , Linfócitos T CD4-Positivos/citologia , Eletrofisiologia/métodos , Homeostase , Humanos , Inflamação , Íons , Microscopia de Vídeo/métodos , Osmose , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Tempo
11.
EMBO J ; 29(13): 2101-13, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20461057

RESUMO

The time course of inactivation of voltage-activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvbeta subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce 'open-channel block'. Open-channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid-induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Edição de RNA , Tetraetilamônio/farmacologia , Animais , Ácido Araquidônico/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Ratos , Xenopus laevis
12.
Ann Neurol ; 73(3): 419-29, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23424019

RESUMO

OBJECTIVE: The outbreak of hemolytic-uremic syndrome and diarrhea caused by Shiga toxin-producing Escherichia coli O104:H4 in Germany during May to July 2011 involved severe and characteristic neurologic manifestations with a strong female preponderance. Owing to these observations, we designed a series of experimental studies to evaluate the underlying mechanism of action of this clinical picture. METHODS: A magnetic resonance imaging and electroencephalographic study of patients was performed to evaluate the clinical picture in detail. Thereafter, combinations of different experimental settings, including electrophysiological and histological analyses, as well as calcium imaging in brain slices of rats, were conducted. RESULTS: We report on 7 female patients with neurologic symptoms and signs including bilateral thalamic lesions and encephalopathic changes indicative of a predominant involvement of the thalamus. Experimental studies in rats revealed an enhanced expression of the Shiga toxin receptor globotriaosylceramide on thalamic neurons in female rats as compared to other brain regions in the same rats and to male animals. Incubation of brain slices with Shiga toxin 2 evoked a strong membrane depolarization and intracellular calcium accumulation in neurons, associated with neuronal apoptosis, predominantly in the thalamic area. INTERPRETATION: These findings suggest that the direct cytotoxic effect of Shiga toxin 2 in the thalamus might contribute to the pathophysiology of neuronal complications in hemolytic-uremic syndrome.


Assuntos
Infecções por Escherichia coli/complicações , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , Toxina Shiga II/toxicidade , Tálamo/patologia , Adulto , Idoso , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Eletroencefalografia , Infecções por Escherichia coli/líquido cefalorraquidiano , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética , Potenciais da Membrana/efeitos dos fármacos , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Caracteres Sexuais , Tálamo/fisiopatologia , Triexosilceramidas/metabolismo , Adulto Jovem
13.
Pflugers Arch ; 465(4): 469-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23207578

RESUMO

Mutations in genes coding for Ca(2+) channels were found in patients with childhood absence epilepsy (CAE) indicating a contribution of Ca(2+)-dependent mechanisms to the generation of spike-wave discharges (SWD) in humans. Since the involvement of Ca(2+) signals remains unclear, the aim of the present study was to elucidate the function of a Ca(2+)-dependent K(+) channel (BKCa) under physiological conditions and in the pathophysiological state of CAE. The activation of BKCa channels is dependent on both voltage and intracellular Ca(2+) concentrations. Moreover, these channels exhibit an outstandingly high level of regulatory heterogeneity that builds the basis for the influence of BKCa channels on different aspects of neuronal activity. Here, we analyse the contribution of BKCa channels to firing of thalamocortical relay neurons, and we test the hypothesis that BKCa channel activity affects the phenotype of a genetic rat model of CAE. We found that the activation of the ß2-adrenergic receptor/protein kinase A pathway resulted in BKCa channel inhibition. Furthermore, BKCa channels affect the number of action potentials fired in a burst and produced spike frequency adaptation during tonic activity. The latter result was confirmed by a computer modelling approach. We demonstrate that the ß2-adrenergic inhibition of BKCa channels prevents spike frequency adaptation and, thus, might significantly support the tonic firing mode of thalamocortical relay neurons. In addition, we show that BKCa channel functioning differs in epileptic WAG/Rij and thereby likely contributes to highly synchronised, epileptic network activity.


Assuntos
Potenciais de Ação , Interneurônios/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Tálamo/metabolismo , Adaptação Fisiológica , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Interneurônios/metabolismo , Modelos Neurológicos , Ratos , Ratos Endogâmicos , Receptores Adrenérgicos beta 2/metabolismo , Tálamo/citologia , Tálamo/fisiopatologia
14.
Pflugers Arch ; 463(1): 89-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083644

RESUMO

Modulation of the standing outward current (I (SO)) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K(+) (K(2P)) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K(+) (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K(+) (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M(1)AChR-(pirenzepine, MT-7) and M(3)AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCß (PI-PLC) inhibitors (U73122, ET-18-OCH(3)), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5'-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on I (SO). Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M(1)AChR/M(3)AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Colinérgicos/fisiologia , Transdução de Sinais/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Expressão Gênica/genética , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Guanosina Trifosfato/antagonistas & inibidores , Guanosina Trifosfato/metabolismo , Concentração de Íons de Hidrogênio , Núcleos Laterais do Tálamo/citologia , Núcleos Laterais do Tálamo/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Técnicas de Patch-Clamp , Fosfolipase C beta/antagonistas & inibidores , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Ratos Long-Evans , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tálamo/citologia , Tionucleotídeos/farmacologia
15.
Neurobiol Dis ; 45(1): 450-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21945537

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels represent the molecular substrate of the hyperpolarization-activated inward current (I(h)). Although these channels act as pacemakers for the generation of rhythmic activity in the thalamocortical network during sleep and epilepsy, their developmental profile in the thalamus is not yet fully understood. Here we combined electrophysiological, immunohistochemical, and mathematical modeling techniques to examine HCN gene expression and I(h) properties in thalamocortical relay (TC) neurons of the dorsal part of the lateral geniculate nucleus (dLGN) in an epileptic (WAG/Rij) compared to a non-epileptic (ACI) rat strain. Recordings of TC neurons between postnatal day (P) 7 and P90 in both rat strains revealed that I(h) was characterized by higher current density, more hyperpolarized voltage dependence, faster activation kinetics, and reduced cAMP-sensitivity in epileptic animals. All four HCN channel isoforms (HCN1-4) were detected in dLGN, and quantitative analyses revealed a developmental increase of protein expression of HCN1, HCN2, and HCN4 but a decrease of HCN3. HCN1 was expressed at higher levels in WAG/Rij rats, a finding that was correlated with increased expression of the interacting proteins filamin A (FilA) and tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Analysis of a simplified computer model of the thalamic network revealed that the alterations of I(h) found in WAG/Rij rats compensate each other in a way that leaves I(h) availability constant, an effect that ensures unaltered cellular burst activity and thalamic oscillations. These data indicate that during postnatal developmental the hyperpolarizing shift in voltage dependency (resulting in less current availability) is compensated by an increase in current density in WAG/Rij thereby possibly limiting the impact of I(h) on epileptogenesis. Because HCN3 is expressed higher in young versus older animals, HCN3 likely does not contribute to alterations in I(h) in older animals.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Epilepsia/metabolismo , Corpos Geniculados/metabolismo , Neurônios/metabolismo , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Epilepsia/genética , Epilepsia/fisiopatologia , Expressão Gênica , Corpos Geniculados/fisiopatologia , Ratos , Especificidade da Espécie
16.
FASEB J ; 25(7): 2484-91, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21478261

RESUMO

Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.


Assuntos
Sinalização do Cálcio/fisiologia , Drosophila melanogaster/metabolismo , Receptores de Amina Biogênica/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Drosophila melanogaster/genética , Estrenos/farmacologia , Fluorometria , Células HEK293 , Humanos , Indóis/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Maleimidas/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Octopamina/metabolismo , Octopamina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Pirrolidinonas/farmacologia , Receptores de Amina Biogênica/genética , Treonina/genética , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
17.
J Cell Biochem ; 111(4): 858-64, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20665541

RESUMO

The membrane potential is mainly maintained by the K(+) concentration gradient across the cell membrane between the cytosol and the extracellular matrix. Here, we show that extracellular addition of high-molecular weight hyaluronan depolarized the membrane potential of human fibroblasts, human embryonic kidney cells (HEK), and central nervous system neurons in a concentration-dependent manner, whereas digestion of cell surface hyaluronan by hyaluronidase caused hyperpolarization. This effect could not be achieved by other glycosaminoglycans or hyaluronan oligosaccharides, chondroitin sulfate, and heparin which did not affect the membrane potential. Mixtures of high-molecular weight hyaluronan and bovine serum albumin had a larger depolarization effect than expected as the sum of both individual components. The different behavior of high-molecular weight hyaluronan versus hyaluronan oligosaccharides and other glycosaminoglycans can be explained by a Donnan effect combined with a steric exclusion of other molecules from the water solvated chains of high-molecular weight hyaluronan. Depolarization of the plasma membrane by hyaluronan represents an additional pathway of signal transduction to the classical CD44 signal transduction pathway, which links the extracellular matrix to intracellular metabolism.


Assuntos
Ácido Hialurônico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Animais , Bovinos , Diálise , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Células HEK293 , Humanos , Hialuronoglucosaminidase/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Soroalbumina Bovina/farmacologia
18.
Eur J Neurosci ; 31(3): 439-49, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20105233

RESUMO

Neuronal Ca(2+) channels are rapidly inactivated by a mechanism that is termed Ca(2+)-dependent inactivation (CDI). In this study we investigated the influence of intracellular Ca(2+) release on CDI of high-voltage-activated Ca(2+) channels in rat thalamocortical relay neurons by combining voltage-clamp, Ca(2+) imaging and immunological techniques. Double-pulse protocols revealed CDI, which depended on the length of the conditioning pulses. Caffeine caused a concentration-dependent increase in CDI that was accompanied by an increase in the duration of Ca(2+) transients. Inhibition of ryanodine receptors and endoplasmic Ca(2+) pumps (by thapsigargin or cyclopiazonic acid) resulted in a reduction of CDI. In contrast, inhibition of inositol 1,4,5-tris-phosphate receptors by intracellular application of 2-aminoethoxy diphenyl borate or heparin did not influence CDI. The block of transient receptor potential channels by extracellular application of 2-aminoethoxy diphenyl borate, however, resulted in a significant reduction of CDI. The central role of L-type Ca(2+) channels was emphasized by the near-complete block of CDI by nifedipine, an effect only surpassed when Ca(2+) was replaced by Ba(2+) and chelated by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N',-tetraacetic acid (BAPTA). Trains of action potential-like stimuli induced a strong reduction in high-voltage-activated Ca(2+) current amplitude, which was significantly reduced when intracellular Ca(2+) stores were made inoperative by thapsigargin or Ba(2+)/BAPTA. Western blotting revealed expression of L-type Ca(2+) channels in thalamic and hippocampal tissue but not liver tissue. In summary, these results suggest a cross-signalling between L-type Ca(2+) channels and ryanodine receptors that controls the amount of Ca(2+) influx during neuronal activity.


Assuntos
Vias Aferentes/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Córtex Cerebral/citologia , Neurônios/fisiologia , Tálamo/citologia , Animais , Compostos de Boro/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Quelantes/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Inibidores Enzimáticos/metabolismo , Ativação do Canal Iônico/fisiologia , Neurônios/citologia , Nifedipino/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans , Rianodina/metabolismo , Tapsigargina/metabolismo
19.
Front Neurol ; 6: 163, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236280

RESUMO

Autoimmune inflammation of the limbic gray matter structures of the human brain has recently been identified as major cause of mesial temporal lobe epilepsy with interictal temporal epileptiform activity and slowing of the electroencephalogram, progressive memory disturbances, as well as a variety of other behavioral, emotional, and cognitive changes. Magnetic resonance imaging exhibits volume and signal changes of the amygdala and hippocampus, and specific anti-neuronal antibodies binding to either intracellular or plasma membrane neuronal antigens can be detected in serum and cerebrospinal fluid. While effects of plasma cell-derived antibodies on neuronal function and integrity are increasingly becoming characterized, potentially contributing effects of T cell-mediated immune mechanisms remain poorly understood. CD8(+) T cells are known to directly interact with major histocompatibility complex class I-expressing neurons in an antigen-specific manner. Here, we summarize current knowledge on how such direct CD8(+) T cell-neuron interactions may impact neuronal excitability, plasticity, and integrity on a single cell and network level and provide an overview on methods to further corroborate the in vivo relevance of these mechanisms mainly obtained from in vitro studies.

20.
Circ Heart Fail ; 8(1): 79-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25424392

RESUMO

BACKGROUND: New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. METHODS AND RESULTS: All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. CONCLUSIONS: Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/efeitos dos fármacos , Coração/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Tetrodotoxina/farmacologia , Animais , Modelos Animais de Doenças , Coração/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Camundongos , Contração Miocárdica/efeitos dos fármacos , Projetos Piloto , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA