Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(10): e2305675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888794

RESUMO

Controlled actuation of superparamagnetic beads (SPBs) within a microfluidic environment using tailored dynamic magnetic field landscapes (MFLs) is a potent approach for the realization of point-of-care diagnostics within Lab-on-a-chip (LOC) systems. Making use of an engineered magnetic domain pattern as the MFL source, a functional LOC-element with combined magnetophoretic "funnel", concentrator, and "valve" functions for micron-sized SPBs is presented. A parallel-stripe domain pattern design with periodically decreasing/increasing stripe lengths is fabricated in a topographically flat continuous exchange biased (EB) thin film system by ion bombardment induced magnetic patterning (IBMP). It is demonstrated that, upon application of external magnetic field pulses, a fully reversible concentration of SPBs at the domain pattern's focal point occurs. In addition, it is shown that this functionality may be used as an SPB "funnel", allowing only a maximum number of particles to pass through the focal point. Adjusting the pulse time length, the focal point can be clogged up for incoming SPBs, resembling an on/off switchable particle "valve". The observations are supported by quantitative theoretical force considerations.

2.
Phys Rev Lett ; 132(20): 203002, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829076

RESUMO

Auger electron spectroscopy is an omnipresent experimental tool in many fields of fundamental research and applied science. The determination of the kinetic energies of the Auger electrons yields information about the element emitting the electron and its chemical environment at the time of emission. Here, we present an experimental approach to determine Auger spectra for emitter sites in the vicinity of a positive elementary charge based on electron-electron-electron and electron-electron-photon coincidence spectroscopy. We observe a characteristic redshift of the Auger spectrum caused by the Coulomb interaction with the charged environment. Our results are relevant for the interpretation of Auger spectra of extended systems like large molecules, clusters, liquids, and solids, in particular in high-intensity radiation fields which are nowadays routinely available, e.g., at x-ray free-electron laser facilities. The effect has been widely ignored in the literature so far, and some interpretations of Auger spectra from clusters might need to be revisited.

3.
Chem Rev ; 120(20): 11295-11369, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33035051

RESUMO

Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.

4.
Phys Chem Chem Phys ; 24(43): 26458-26465, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305893

RESUMO

X-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight into the structure, handedness, and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular-frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme, we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, e.g., protons.


Assuntos
Elétrons , Estrutura Molecular , Estereoisomerismo , Raios X
5.
Langmuir ; 37(28): 8498-8507, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34231364

RESUMO

Controlled transport of surface-functionalized magnetic beads in a liquid medium is a central requirement for the handling of captured biomolecular targets in microfluidic lab-on-chip biosensors. Here, the influence of the physiological liquid medium on the transport characteristics of functionalized magnetic particles and on the functionality of the coupled protein is studied. These aspects are theoretically modeled and experimentally investigated for prototype superparamagnetic beads, surface-functionalized with green fluorescent protein immersed in buffer solution with different concentrations of a surfactant. The model reports on the tunability of the steady-state particle substrate separation distance to prevent their surface sticking via the choice of surfactant concentration. Experimental and theoretical average velocities are discussed for a ratchet-like particle motion induced by a dynamic external field superposed on a static locally varying magnetic field landscape. The developed model and experiment may serve as a basis for quantitative forecasts on the functionality of magnetic particle transport-based lab-on-chip devices.


Assuntos
Técnicas Biossensoriais , Tensoativos , Campos Magnéticos , Magnetismo , Microfluídica
6.
Soft Matter ; 17(6): 1663-1674, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33367385

RESUMO

Paramagnetic colloidal spheres assemble to colloidal bipeds of various length in an external magnetic field. When the bipeds reside above a magnetic pattern and we modulate the direction of the external magnetic field, the rods perform topologically distinct classes of protected motion above the pattern. The topological protection allows each class to be robust against small continuous deformations of the driving loop of the external field. We observe motion of the rod from a passive central sliding and rolling motion for short bipeds toward a walking motion with both ends of the rod alternately touching down on the pattern for long bipeds. The change of character of the motion occurs in form of discrete topological transitions. The topological protection makes walking a form of motion robust against the breaking of the non symmorphic symmetry. In patterns with non symmorphic symmetry walking is reversible. In symmorphic patterns lacking a glide plane the walking can be irreversible or reversible involving or not involving ratchet jumps. Using different gauges allows us to unravel the active and passive aspects of the topological walks.

7.
Phys Rev Lett ; 124(4): 047203, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058758

RESUMO

We show that it is possible to engineer magnetic multidomain configurations without domain walls in a prototypical rare-earth-transition-metal ferrimagnet using keV He^{+} ion bombardment. We additionally show that these patterns display a particularly stable magnetic configuration due to a deep minimum in the energy of the system caused by flux closure and a corresponding reduction of the magnetostatic energy without an increase in energy by exchange and anisotropy terms across the walls. This occurs because light-ion bombardment affects an element's relative contribution to the properties of the ferrimagnet differently. Therefore, it is possible to control the relative contribution from each magnetic subsystem. The selection of material and the use of light-ion bombardment allow us to engineer domain patterns in continuous magnetic films, which open a way to fabricate them in a much smaller scale than currently possible. Our Letter emphasizes that the right criterion to determine the presence or absence of a domain wall is whether there is a rotation of the spin for each sublattice and that changes of the direction of effective magnetization alone do not constitute an appropriate criterion.

8.
Soft Matter ; 16(6): 1594-1598, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956884

RESUMO

Single and double paramagnetic colloidal particles are placed above a magnetic square pattern and are driven with an external magnetic field processing around a high symmetry direction of the pattern. The external magnetic field and that of the pattern confine the colloids into lanes parallel to a lattice vector of the pattern. The precession of the external field causes traveling minima of the magnetic potential along the direction of the lanes. At sufficiently high frequencies of modulation, only the doublets respond to the external field and move in direction of the traveling minima along the lanes, while the single colloids cannot follow and remain static. We show how the doublets can induce a coordinated motion of the single colloids building colloidal trains made of a chain of several single colloids transported by doublets.

9.
Phys Rev Lett ; 123(21): 213001, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809166

RESUMO

We report the observation of the radiative decay of singly charged noble gas ground-state ions embedded in heterogeneous van der Waals clusters. Electron-photon coincidence spectroscopy and dispersed photon spectroscopy are applied to identify the radiative charge transfer from Kr atoms to a Ne_{2}^{+} dimer, which forms after single valence photoionization of Ne atoms at the surface of a NeKr cluster. This mechanism might be a fundamental decay process of ionized systems in an environment.

10.
Soft Matter ; 15(7): 1539-1550, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608507

RESUMO

Edge currents of paramagnetic colloidal particles propagate at the edge between two topologically equivalent magnetic lattices of different lattice constant when the system is driven with periodic modulation loops of an external magnetic field. The number of topologically protected particle edge transport modes is not determined by a bulk-boundary correspondence. Instead, we find a rich variety of edge transport modes that depend on the symmetry of both the edge and the modulation loop. The edge transport can be ratchet-like or adiabatic, time or non-time reversal symmetric. The topological nature of the edge transport is classified by a set of winding numbers around bulk fence points extended by winding numbers around edge specific bifurcation points that cannot be deduced from the two bulk lattices.

11.
J Phys Chem A ; 123(16): 3551-3557, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30943036

RESUMO

Action spectroscopy using photon excitation in the VUV range (photon energy 4.5-9 eV) was performed on protonated uracil (UraH+) and uridine (UrdH+). The precursor ions with m/ z 113 and m/ z 245, respectively, were produced by an electrospray ionization source and accumulated inside a quadrupole ion trap mass spectrometer. After irradiation with tunable synchrotron radiation, product ion mass spectra were obtained. Fragment yields as a function of excitation energy show several maxima that can be attributed to the photoexcitation into different electronic states. For uracil, vertically excited states were calculated using the equation-of-motion coupled cluster approach and compared to the observed maxima. This allows to establish correlations between electronic states and the resulting fragment masses and can thus help to disentangle the complex de-excitation and fragmentation pathways of nucleic acid building blocks. Photofragmentation of the nucleoside uridine shows a significantly lower variety of fragments, indicating stabilization of the nucleobase by the attached sugar.

12.
Molecules ; 23(7)2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949868

RESUMO

Dichroism in angle-resolved spectra of circularly polarized fluorescence from freely-rotating CO molecules was studied experimentally and theoretically. For this purpose, carbon monoxide in the gas phase was exposed to circularly polarized soft X-ray synchrotron radiation. The photon energy was tuned across the C 1s→π* resonant excitation, which decayed via the participator Auger transition into the CO⁺ A ²Π state. The dichroic parameter ß1 of the subsequent CO⁺ (A ²Π → X ²Σ⁺) visible fluorescence was measured by photon-induced fluorescence spectroscopy. Present experimental results are explained with the ab initio electronic structure and dynamics calculations performed by the single center method. Our results confirm the possibility to perform partial wave analysis of the emitted photoelectrons in closed-shell molecules.


Assuntos
Monóxido de Carbono/química , Dicroísmo Circular , Modelos Teóricos , Espectrometria de Fluorescência
13.
Soft Matter ; 13(29): 5044-5075, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28703235

RESUMO

The topologically protected transport of colloidal particles on top of periodic magnetic patterns is studied experimentally, theoretically, and with computer simulations. To uncover the interplay between topology and symmetry we use patterns of all possible two dimensional magnetic point group symmetries with equal lengths lattice vectors. Transport of colloids is achieved by modulating the potential with external, homogeneous but time dependent magnetic fields. The modulation loops can be classified into topologically distinct classes. All loops falling into the same class cause motion in the same direction, making the transport robust against internal and external perturbations. We show that the lattice symmetry has a profound influence on the transport modes, the accessibility of transport networks, and the individual transport directions of paramagnetic and diamagnetic colloidal particles. We show how the transport of colloidal particles above a two fold symmetric stripe pattern changes from universal adiabatic transport at large elevations via a topologically protected ratchet motion at intermediate elevations toward a non-transport regime at low elevations. Transport above four-fold symmetric patterns is closely related to the two-fold symmetric case. The three-fold symmetric case however consists of a whole family of patterns that continuously vary with a phase variable. We show how this family can be divided into two topologically distinct classes supporting different transport modes and being protected by proper and improper six fold symmetries. We discuss and experimentally demonstrate the topological transition between both classes. All three-fold symmetric patterns support independent transport directions of paramagnetic and diamagnetic particles. The similarities and the differences in the lattice symmetry protected transport of classical over-damped colloidal particles versus the topologically protected transport in quantum mechanical systems are emphasized.

14.
Langmuir ; 32(41): 10491-10496, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27661087

RESUMO

It is shown that the self-assembly of diamagnetic molecule submonolayers on a surface can be influenced by magnetic stray field landscapes emerging from artificially fabricated magnetic domains and domain walls. The directed local chemisorption of diamagnetic subphthalocyaninatoboron molecules in relation to the artificially created domain pattern is proved by a combination of surface analytical methods: ToF-SIMS, X-PEEM, and NEXAFS imaging. Thereby, a new method to influence self-assembly processes and to produce patterned submonolayers is presented.

15.
Phys Chem Chem Phys ; 17(48): 32574-5, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26597710

RESUMO

Correction for 'Size and shape dependent photoluminescence and excited state decay rates of diamondoids' by Robert Richter et al., Phys. Chem. Chem. Phys., 2014, 16, 3070-3076.

16.
Sensors (Basel) ; 15(11): 28854-88, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26580625

RESUMO

A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB) for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs' magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB) thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL) above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP). A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate's MFL and the pulse scheme of the external magnetic field.


Assuntos
Técnicas Biossensoriais , Imãs , Técnicas Analíticas Microfluídicas , Magnetismo , Nanotecnologia
17.
Phys Chem Chem Phys ; 16(7): 3070-6, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398975

RESUMO

We present photoluminescence spectra and excited state decay rates of a series of diamondoids, which represent molecular structural analogues to hydrogen-passivated bulk diamond. Specific isomers of the five smallest diamondoids (adamantane-pentamantane) have been brought into the gas phase and irradiated with synchrotron radiation. All investigated compounds show intrinsic photoluminescence in the ultraviolet spectral region. The emission spectra exhibit pronounced vibrational fine structure which is analyzed using quantum chemical calculations. We show that the geometrical relaxation of the first excited state of adamantane, exhibiting Rydberg character, leads to the loss of Td symmetry. The luminescence of adamantane is attributed to a transition from the delocalized first excited state into different vibrational modes of the electronic ground state. Similar geometrical changes of the excited state structure have also been identified in the other investigated diamondoids. The excited state decay rates show a clear dependence on the size of the diamondoid, but are independent of the particle geometry, further indicating a loss of particle symmetry upon electronic excitation.

18.
Nat Commun ; 15(1): 5735, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977702

RESUMO

Topological growth control allows to produce a narrow distribution of outgrown colloidal rods with defined and adjustable length. We use an external magnetic field to assemble paramagnetic colloidal spheres into colloidal rods of a chosen length. The rods reside above a metamorphic hexagonal magnetic pattern. The periodic repetition of specific loops of the orientation of an applied external field renders paramagnetic colloidal particles and their assemblies into active bipeds that walk on the pattern. The metamorphic patterns allow the robust and controlled polymerization of single colloids to bipeds of a desired length. The colloids are exposed to this fixed external control loop that causes multiple simultaneous responses: Small bipeds and single colloidal particles interpret the external magnetic loop as an order to walk toward the active zone, where they assemble and polymerize. Outgrown bipeds interpret the same loop as an order to walk away from the active zone. The topological transition occurs solely for the growing biped and nothing is changed in the environment nor in the magnetic control loop. As in many biological systems the decision of a biped that reached its outgrown length to walk away from the reaction site is made internally, not externally.

19.
Nat Commun ; 15(1): 4594, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816362

RESUMO

X-ray-induced damage is one of the key topics in radiation chemistry. Substantial damage is attributed to low-energy electrons and radicals emerging from direct inner-shell photoionization or produced by subsequent processes. We apply multi-electron coincidence spectroscopy to X-ray-irradiated aqueous solutions of inorganic ions to investigate the production of low-energy electrons (LEEs) in a predicted cascade of intermolecular charge- and energy-transfer processes, namely electron-transfer-mediated decay (ETMD) and interatomic/intermolecular Coulombic decay (ICD). An advanced coincidence technique allows us to identify several LEE-producing steps during the decay of 1s vacancies in solvated Mg2+ ions, which escaped observation in previous non-coincident experiments. We provide strong evidence for the predicted recovering of the ion's initial state. In natural environments the recovering of the ion's initial state is expected to cause inorganic ions to be radiation-damage hot spots, repeatedly producing destructive particles under continuous irradiation.

20.
Nat Commun ; 14(1): 7517, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980403

RESUMO

Topological protection ensures stability of information and particle transport against perturbations. We explore experimentally and computationally the topologically protected transport of magnetic colloids above spatially inhomogeneous magnetic patterns, revealing that transport complexity can be encoded in both the driving loop and the pattern. Complex patterns support intricate transport modes when the microparticles are subjected to simple time-periodic loops of a uniform magnetic field. We design a pattern featuring a topological defect that functions as an attractor or a repeller of microparticles, as well as a pattern that directs microparticles along a prescribed complex trajectory. Using simple patterns and complex loops, we simultaneously and independently control the motion of several identical microparticles differing only in their positions above the pattern. Combining complex patterns and complex loops we transport microparticles from unknown locations to predefined positions and then force them to follow arbitrarily complex trajectories concurrently. Our findings pave the way for new avenues in transport control and dynamic self-assembly in colloidal science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA