Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Legal Med ; 127(2): 277-86, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22820653

RESUMO

For very challenged biological samples, mitochondrial DNA (mtDNA) analysis can often provide results when the more traditional nuclear DNA markers fail. While reliable, the current method of mtDNA analysis by Sanger sequencing is expensive, labor-intensive, and time-consuming and is limited by its inability to quantify mixed samples. The Abbott PLEX-ID™ instrument, which enables analysis of mtDNA amplicons via electrospray ionization mass spectrometry (ESI-MS), produces comparable accuracy and sensitivity while offering a faster and less expensive alternative to Sanger sequencing. Unlike Sanger sequencing, this system is capable of quantifying DNA species and thus may be exploited for evaluating heteroplasmy and, possibly, mixture deconvolution. Validation studies of the PLEX-ID™ mtDNA assay confirmed that the instrument is highly sensitive and capable of yielding reproducible results. Samples commonly encountered in a forensic setting, as well as population samples, were typed correctly. The PLEX-ID™ mtDNA assay yields reliable results for single-source samples, which are the same sample types currently examined in forensic laboratories via Sanger sequencing, at a level that meets or exceeds that of the current method. While the instrument has the demonstrated capability to quantify mixed samples, the specific assay design for mtDNA analysis can be used only in a limited fashion to analyze mixtures due to the formation of chimeric mtDNA products.


Assuntos
Impressões Digitais de DNA/instrumentação , DNA Mitocondrial/genética , Espectrometria de Massas por Ionização por Electrospray , Animais , Quimera/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
2.
Int J Legal Med ; 125(1): 101-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20878415

RESUMO

The AmpFlSTR® NGM™ PCR Amplification Kit enables amplification of 15 autosomal short tandem repeat (STR) loci. The loci are the ten STRs in the SGM Plus® Kit plus the EDNAP and ENSFI recommended STRs D10S1248, D22S1045, D2S441, D1S1656, and D12S391. Allele frequency and other forensically relevant statistics data were generated for the NGM loci in three US population groups (African Americans, Caucasians, and Hispanics). The analyses support that the NGM multiplex is one of the most informative STR multiplex kits available to the forensic science community. At the population level, there are no more detectable departures from expectations of the independence of alleles within as well as between loci than would be expected due to chance, even for the two syntenic loci vWA and D12S391; however, linkage analysis in three large pedigree families shows close linkage between these two loci with a recombination fraction of 0.108. Therefore, in contrast to the practices in calculating the rarity of a DNA profile, for kinship analyses independence between the loci, vWA and D12S391 cannot be assumed.


Assuntos
Genética Populacional , Sequências de Repetição em Tandem , Impressões Digitais de DNA/métodos , Frequência do Gene , Ligação Genética , Humanos , Reação em Cadeia da Polimerase , Grupos Raciais/genética , Estados Unidos
3.
Int J Legal Med ; 125(4): 559-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21448665

RESUMO

Y chromosome short tandem repeat (Y-STR) loci are important genetic markers for forensic biological evidence analyses. However, paternal inheritance, reduced effective population size, and lack of independence between loci can reduce Y-STR diversity and may yield greater population substructure effects on a locus-by-locus basis compared with the autosomal STR loci. Population studies are necessary to assess the genetic variation of forensically relevant markers so that proper inferences can be made about the rarity of DNA profiles. This study examined 16 Y-STRs in three sampled populations of Native Americans from Alaska: Inupiat, Yupik, and Athabaskan. Population genetic and statistical issues addressed were: (1) the degree of diversity at locus and haplotype levels, (2) determination of the loci that contribute more so to haplotype diversity, and (3) the effects of population substructure on forensic statistical calculations of the rarity of a Y-STR profile. All three population samples were highly polymorphic at the haplotype level for the 16 Y-STR markers; however, the Native Americans demonstrated reduced genetic diversity compared with major US populations. The degree of substructure indicated that the three populations were related and admixed in terms of paternal lineage. The examination of more polymorphic loci may be needed to increase the power of discrimination of Y-STR systems in these populations.


Assuntos
Cromossomos Humanos Y/genética , Loci Gênicos/genética , Variação Genética/genética , Genética Populacional/métodos , Indígenas Norte-Americanos/genética , Repetições de Microssatélites/genética , Alaska , Genética Forense/métodos , Efeito Fundador , Frequência do Gene , Pool Gênico , Marcadores Genéticos/genética , Haplótipos/genética , Humanos , Masculino , Polimorfismo Genético/genética , Prisioneiros
4.
Croat Med J ; 50(3): 207-17, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19480017

RESUMO

Low copy number (LCN) typing, particularly for current short tandem repeat (STR) typing, refers to the analysis of any sample that contains less than 200 pg of template DNA. Generally, LCN typing simply can be defined as the analysis of any DNA sample where the results are below the stochastic threshold for reliable interpretation. There are a number of methodologies to increase sensitivity of detection to enable LCN typing. These approaches encompass modifications during the polymerase chain reaction (PCR) and/or post-PCR manipulations. Regardless of the manipulations, when processing a small number of starting templates during the PCR exaggerated stochastic sampling effects will occur. The result is that several phenomena can occur: a substantial imbalance of 2 alleles at a given heterozygous locus, allelic dropout, or increased stutter. With increased sensitivity of detection there is a concomitant increased risk of contamination. Recently, a commission reviewed LCN typing and found it to be "robust" and "fit for purpose." Because LCN analysis by its nature is not reproducible, it cannot be considered as robust as that associated with conventional DNA typing. The findings of the commission seem inconsistent with the nature of LCN typing. While LCN typing is appropriate for identification of missing persons and human remains and for developing investigative leads, caution should be taken with its use in other endeavors until developments are made that overcome the vagaries of LCN typing. A more in-depth evaluation by the greater scientific community is warranted. The issues to consider include: training and education, evidence handling and collection procedures, the application or purpose for which the LCN result will be used, the reliability of current LCN methods, replicate analyses, interpretation and uncertainty, report writing, validation requirements, and alternate methodologies for better performance.


Assuntos
Impressões Digitais de DNA/métodos , Ciências Forenses , Dosagem de Genes , Genótipo , Humanos , Repetições de Microssatélites/genética
5.
Forensic Sci Int ; 151(1): 111-24, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16156007

RESUMO

Y chromosome-specific short tandem repeat (Y-STR) analysis has become another widely accepted tool for human identification. The PowerPlex Y System is a fluorescent multiplex that includes the 12 loci: DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439. This panel of markers incorporates the 9-locus European minimal haplotype (EMH) loci recommended by the International Y-STR User Group and the 11-locus set recommended by the Scientific Working Group on DNA Analysis Methods (SWGDAM). Described here are inter-laboratory results from 17 developmental validation studies of the PowerPlex Y System and include the following results: (a) samples distributed between laboratories and commercial standards produced expected and reproducible haplotypes; (b) use of common amplification and detection instruments were successfully demonstrated; (c) full profiles were obtained with standard 30 and 32 cycle amplification protocols and cycle number (24-28 cycles) could be modified to match different substrates (such as direct amplification of FTA paper); (d) complete profiles were observed with reaction volumes from 6.25 to 50 microL; (e) minimal impact was observed with variation of enzyme concentration; (f) full haplotypes were observed with 0.5-2x primer concentrations; however, relative yield between loci varied with concentration; (g) reduction of magnesium to 1mM (1.5 mM standard) resulted in minimal amplification, while only partial loss of yield was observed with 1.25 mM magnesium; (h) decreasing the annealing temperature by 2-4 degrees C did not generate artifacts or locus dropout and most laboratories observed full amplification with the annealing temperature increased by 2 degrees C and significant locus dropout with a 4 degrees C increase in annealing temperature; (i) amplification of individual loci with primers used in the multiplex produced the same alleles as observed with the multiplex amplification; (j) all laboratories observed full amplification with >or = 125 pg of male template with partial and/or complete profiles observed using 30-62.5 pg of DNA; (k) analysis of < or = 500 ng of female DNA did not yield amplification products; (l) the minor male component of a male/female mixture was observed with < or =1200-fold excess female DNA with the majority of alleles still observed with 10,000-fold excess female; (m) male/male mixtures produced full profiles from the minor contributor with 10-20-fold excess of the major contributor; (n) average stutter for each locus; (o) precision of sizing were determined; (p) human-specificity studies displayed amplification products only with some primate samples; and (q) reanalysis of 102 non-probative casework samples from 65 cases produced results consistent with original findings and in some instances additional identification of a minor male contributor to a male/female mixture was obtained. In general, the PowerPlex Y System was shown to have the sensitivity, specificity and reliability required for forensic DNA analysis.


Assuntos
Cromossomos Humanos Y , Impressões Digitais de DNA/normas , Reação em Cadeia da Polimerase/normas , Processos de Determinação Sexual , Sequências de Repetição em Tandem , Animais , Primers do DNA , Feminino , Marcadores Genéticos , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
6.
Forensic Sci Int ; 148(1): 1-14, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15607584

RESUMO

Y chromosome-specific short tandem repeat (Y-STR) analysis has become another widely accepted tool for human identification. The PowerPlex Y System is a fluorescent multiplex that includes the 12 loci: DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439. This panel of markers incorporates the 9-locus European minimal haplotype (EMH) loci recommended by the International Y-STR User Group and the 11-locus set recommended by the Scientific Working Group on DNA Analysis Methods (SWGDAM). Described here are inter-laboratory results from 17 developmental validation studies of the PowerPlex Y System and include the following results: (a) samples distributed between laboratories and commercial standards produced expected and reproducible haplotypes; (b) use of common amplification and detection instruments were successfully demonstrated; (c) full profiles were obtained with standard 30 and 32 cycle amplification protocols and cycle number (24-28 cycles) could be modified to match different substrates (such as direct amplification of FTA paper); (d) complete profiles were observed with reaction volumes from 6.25 to 50 microL; (e) minimal impact was observed with variation of enzyme concentration; (f) full haplotypes were observed with 0.5-2x primer concentrations; however, relative yield between loci varied with concentration; (g) reduction of magnesium to 1mM (1.5 mM standard) resulted in minimal amplification, while only partial loss of yield was observed with 1.25 mM magnesium; (h) decreasing the annealing temperature by 2-4 degrees C did not generate artifacts or locus dropout and most laboratories observed full amplification with the annealing temperature increased by 2 degrees C and significant locus dropout with a 4 degrees C increase in annealing temperature; (i) amplification of individual loci with primers used in the multiplex produced the same alleles as observed with the multiplex amplification; (j) all laboratories observed full amplification with >or = 125 pg of male template with partial and/or complete profiles observed using 30-62.5 pg of DNA; (k) analysis of < or = 500 ng of female DNA did not yield amplification products; (l) the minor male component of a male/female mixture was observed with < or =1200-fold excess female DNA with the majority of alleles still observed with 10,000-fold excess female; (m) male/male mixtures produced full profiles from the minor contributor with 10-20-fold excess of the major contributor; (n) average stutter for each locus; (o) precision of sizing were determined; (p) human-specificity studies displayed amplification products only with some primate samples; and (q) reanalysis of 102 non-probative casework samples from 65 cases produced results consistent with original findings and in some instances additional identification of a minor male contributor to a male/female mixture was obtained. In general, the PowerPlex Y System was shown to have the sensitivity, specificity and reliability required for forensic DNA analysis.


Assuntos
Cromossomos Humanos Y , Impressões Digitais de DNA/normas , Reação em Cadeia da Polimerase/normas , Processos de Determinação Sexual , Sequências de Repetição em Tandem , Animais , Primers do DNA , Feminino , Marcadores Genéticos , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
7.
Leg Med (Tokyo) ; 7(4): 230-43, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15975517

RESUMO

Many mass disasters result in loss of lives. Law enforcement and/or public safety and health officials often have the responsibility for identifying the human remains found at the scene, so they can be returned to their families. The recovered human remains range from being relatively intact to highly degraded. DNA-based identity testing is a powerful tool for victim identification in that the data are not restricted to any particular one to one body landmark comparison and DNA profile comparisons can be used to associate separated remains or body parts. Even though DNA typing is straightforward, a disaster is a chaotic environment that can complicate effective identification of the remains. With some planning, or at least identification of the salient features to consider, stress can be reduced for those involved in the identification process. General guidelines are provided for developing an action plan for identification of human remains from a mass disaster by DNA analysis. These include: (1) sample collection, preservation, shipping and storage; (2) tracking and chain of custody issues; (3) laboratory facilities; (4) quality assurance and quality control practices; (5) parsing out work; (6) extraction and typing; (7) interpretation of results; (8) automation; (9) software for tracking and managing data; (10) the use of an advisory panel; (11) education and communication; and (12) privacy issues. In addition, key technologies that may facilitate the identification process are discussed, such as resin based DNA extraction, real-time PCR for quantitation of DNA, use of mini-STRs, SNP detection procedures, and software. Many of the features necessary for DNA typing of human remains from a mass disaster are the same as those for missing persons' cases. Therefore, developing a missing persons DNA identification program would also provide the basis for a mass disaster human remains DNA identification program.


Assuntos
DNA/análise , Desastres , Medicina Legal/organização & administração , Comitês Consultivos , Comunicação , Família , Humanos , Software , Manejo de Espécimes
8.
Leg Med (Tokyo) ; 14(1): 36-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22182593

RESUMO

The DNA extraction performance of three low-throughput extraction systems was evaluated. The instruments and respective chemistries all use a similar extraction methodology that involves binding DNA to a coated magnetic resin in the presence of chaotropic salt, washing of the resin to remove undesirable compounds, and elution of DNA from the particles in a low-salt solution. The AutoMate Express™ (Life Technologies Corporation, Carlsbad, CA), EZ1® Advanced XL (Qiagen Inc., Valencia, CA), and Maxwell® 16 (Promega Corporation, Madison, WI) were compared using a variety of samples including: blood on swabs, blood on denim, blood on cotton, blood mixed with inhibitors (a mixture of indigo, hematin, humic acid, and urban dust) on cotton, blood on FTA® paper, saliva residue on cigarette butt paper, epithelial cells on cotton swabs, neat semen on cotton, hair roots, bones, and teeth. Each instrument had a recommended pre-processing protocol for each sample type, and these protocols were followed strictly to reduce user bias. All extractions were performed in triplicate for each sample type. The three instruments were compared on the basis of quantity of DNA recovered (as determined by real-time PCR), relative level of inhibitors present in the extract (shown as shifts in the C(T) value for the internal PCR control in the real-time PCR assay), STR peak heights, use of consumables not included in the extraction kits, ease of use, and application flexibility. All three systems performed well; however extraction efficiency varied by sample type and with the preprocessing protocol applied to the various samples.


Assuntos
Impressões Digitais de DNA/instrumentação , DNA/isolamento & purificação , Alelos , Sangue , Osso e Ossos/química , Células Epiteliais/química , Cabelo/química , Humanos , Masculino , Papel , Reação em Cadeia da Polimerase , Saliva/química , Sêmen/química , Têxteis , Dente/química
9.
Forensic Sci Int Genet ; 6(4): 494-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22210410

RESUMO

Discordance of STR typing results can be expected between kits that employ different primers for amplification. The complex motif of the SE33 locus and its flanking regions can contribute to the degree of discordant results. Sequence-dependent conformational changes can manifest as length differences under certain electrophoretic conditions and/or use of different primers. The AmpFlSTR® NGM SElect™ PCR Amplification Kit (Life Technologies, Carlsbad, CA), PowerPlex® ESX 17 system (Promega Corporation, Madison, WI), and PowerPlex® ESI 17 system (Promega Corporation) were compared for concordance of allele calls for the SE33 marker in selected samples. A total of 16 samples were identified that were discordant at one of the SE33 alleles by an apparent one nucleotide in size. While the ESX 17 and NGM SElect™ kits yielded concordant results for these 16 samples, the ESI 17 kit generated alleles that differed. The discordant alleles were observed in individuals of African and European descent. Sequence analysis revealed that the one-base difference in size is not due to an indel but is instead the result of a single nucleotide polymorphism (SNP) in the flanking region of the SE33 repeat region. Three different SNPs were observed, one of which is novel. Although these migration anomalies were observed only with the ESI 17 kit, one cannot preclude that a similar phenomenon may occur with the other kits as data sets increase. The type and degree of discordance of STR allele calls among STR kits is an important issue when comparing STR profiles among laboratories and when determining search parameters for identifying candidate associations in national databases.


Assuntos
Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Alelos , População Negra/genética , Impressões Digitais de DNA , Eletroforese Capilar , Loci Gênicos , Marcadores Genéticos , Humanos , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
10.
Forensic Sci Int Genet ; 6(1): 31-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21324769

RESUMO

The ability to properly collect, analyze and preserve biological stains is important to preserving the integrity of forensic evidence. Stabilization of intact biological evidence in cells and the DNA extracts from them is particularly important since testing is generally not performed immediately following collection. Furthermore, retesting of stored DNA samples may be needed in casework for replicate testing, confirmation of results, and to accommodate future testing with new technologies. A novel room temperature DNA storage medium, SampleMatrix™ (SM; Biomatrica, Inc., San Diego, CA), was evaluated for stabilizing and protecting samples. Human genomic DNA samples at varying amounts (0.0625-200 ng) were stored dry in SM for 1 day to 1 year under varying conditions that included a typical ambient laboratory environment and also through successive freeze-thaw cycles (3 cycles). In addition, spiking of 1-4 × SM into samples prior to analysis was performed to determine any inhibitory effects of SM. Quantification of recovered DNA following storage was determined by quantitative PCR or by agarose gel electrophoresis, and evaluation of quantitative peak height results from multiplex short tandem repeat (STR) analyses were performed to assess the efficacy of SM for preserving DNA. Results indicate no substantial differences between the quality of samples stored frozen in liquid and those samples maintained dry at ambient temperatures protected in SM. For long-term storage and the storage of low concentration samples, SM provided a significant advantage over freezer storage through higher DNA recovery. No detectable inhibition of amplification was observed at the recommended SM concentration and complete profiles were obtained from genomic DNA samples even in the presence of higher than recommended concentrations of the SM storage medium. The ability to stabilize and protect DNA from degradation at ambient temperatures for extended time periods could have tremendous impact in simplifying and improving sample storage conditions and requirements. The current work focuses on forensics analysis; however this technology is applicable to all endeavors requiring storage of DNA.


Assuntos
DNA/química , Genética Forense , Manejo de Espécimes , Temperatura , Humanos
11.
J Forensic Leg Med ; 18(4): 184-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21550571

RESUMO

The present study characterizes the genetic variability of Mulatto population based on the polymorphism of six miniSTR autosomal loci, known as Non Codis 01 and 02 (NC01 and NC02) and evaluate their applicability in forensic genetics. A sample of 102 unrelated Brazilian mulattoes were genotyped for miniSTR loci D1S1677, D2S441, D4S2364 (miniplex NC02) and 45 individuals for D10S1248, D14S1434, D22S1045 (miniplex NC01). No significant deviations from Hardy-Weinberg equilibrium expectations were detected. The combined power of discrimination (PD) and mean power of exclusion (PE) were 0.999996 and 0.98991, respectively. The results also support the effectiveness of the NC01and NC02 miniplexes for human identification.


Assuntos
Etnicidade/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Brasil , Impressões Digitais de DNA , Frequência do Gene , Genótipo , Humanos
12.
Leg Med (Tokyo) ; 12(6): 289-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817529

RESUMO

A forensic Y-STR database generated in the US was compiled with profiles containing a portion or complete typing of 16 STR markers DYS19, DYS385, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS456, DYS458, DYS635, DYS448, and Y GATA H4. There were 17,447 samples in the version of database in which 77% and 20% were collected in North America and Asia, respectively. The database was separated into six general populations, African American, Asian, Caucasian, Hispanic, Indian, and Native American. Each population was further classified into subgroups according to geographic regions. Some subgroups were tested, found to be homogenous and merged together. Allele and haplotype frequencies, as well as sample sizes were summarized. Of the full haplotypes (i.e., 16 STRs without missing data), 93.7% in total population were distinct, 92.9% were population specific, and 89.3% were only observed once. The majority of shared haplotypes were found among North American populations as a result of admixture lasting the past few hundred years. The power of discrimination (PD), coancestry coefficient (F(st)), and coefficient of gene differentiation (G(st)) at locus and haplotype levels were also calculated. The most polymorphic marker was DYS385; this marker contains a tandem duplication and actually is composed of two loci. Both G(st) and F(st) estimates were very small with haplotypes composed of a high number of STRs haplotypes (e.g., 10-16 markers), although G(st) is slightly more conservative for these extended haplotypes. With Native American removed from the total population data set, the G(st) and F(st) estimates reduce further. PD was 0.9998 for the total population dataset for all 16 Y-STR markers. Three measures of Y-STR profile frequency were calculated: (1) unconditional haplotype frequency, (2) population substructure adjusted frequency, and (3) binomial upper bound of the haplotype frequency. The binomial upper bound is the most conservative estimate for most forensic applications. Estimates of the weight of a Y-STR haplotype can be estimated using population specific or total population databases.


Assuntos
Bases de Dados Genéticas , Genes Ligados ao Cromossomo Y , Repetições de Microssatélites/genética , Feminino , Genética Forense , Humanos , Masculino , Estados Unidos
13.
Forensic Sci Int Genet ; 3(3): 179-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19414166

RESUMO

Father-son pairs from three populations (African American, Caucasian, and Hispanic) of Texas were typed for the 17 Y STR markers DYS19, DYS385, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS456, DYS458, DYS635, DYS448, and Y GATA H4 using the AmpFlSTR YfilerTM kit. With 49,578 allele transfers, 102 mutations were detected. One three-step and four two-step mutations were found, and all others (95.1%) were one-step mutations. The number of gains (48) and losses (54) of repeats were nearly similar. The average mutation rate in the total population is 2.1 x 10(-3) per locus (95% CI (1.7-2.5)x10(-3)). African Americans showed a higher mutation rate (3.0 x 10(-3); 95% CI (2.4-4.0)x10(-3)) than the Caucasians (1.7 x 10(-3); 95% CI (1.1-2.5)x10(-3)) and Hispanics (1.5 x 10(-3); 95% CI (1.0-2.2)x10(-3)), but grouped by repeat-lengths, such differences were not significant. Mutation is correlated with relative length of alleles, i.e., longer alleles are more likely to mutate compared with the shorter ones at the same locus. Mutation rates are also correlated with the absolute number of repeats, namely, alleles with higher number of repeats are more likely to mutate than the shorter ones (p-value=0.030). Finally, occurrences of none, one, and two mutations over the father-son transmission of alleles were consistent with the assumption of independence of mutation rates across loci.


Assuntos
Cromossomos Humanos Y , Genética Populacional , Repetições de Microssatélites , Mutação , Grupos Populacionais/genética , Negro ou Afro-Americano , Impressões Digitais de DNA/métodos , Pai , Hispânico ou Latino , Humanos , Masculino , Núcleo Familiar , Texas , População Branca
14.
J Forensic Sci ; 54(5): 1016-21, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19627418

RESUMO

Three sampled populations of unrelated males--African American, Caucasian, and Hispanic, all from Texas-were typed for 16 Y short tandem repeat (STR) markers using the AmpFlSTR Yfiler kit. These samples also were typed previously for the 13 core CODIS autosomal STR loci. Most of the 16 marker haplotypes (2478 out of 2551 distinct haplotypes) were observed only once in the data sets. Haplotype diversities were 99.88%, 99.89%, and 99.87% for the African American, Caucasian, and Hispanic sample populations, respectively. F(ST) values were very small when a haplotype comprised 10-16 markers. This suggests that inclusion of substructure correction is not required. However, haplotypes consisting of fewer loci may require the inclusion of F(ST) corrections. The testing of independence of autosomal and Y STRs supports the proposition that the frequencies of autosomal and Y STR profiles can be combined using the product rule.


Assuntos
Cromossomos Humanos Y , Impressões Digitais de DNA , Haplótipos , Grupos Raciais/genética , Sequências de Repetição em Tandem , Marcadores Genéticos , Variação Genética , Humanos , Masculino , Reação em Cadeia da Polimerase , Texas
15.
Muscle Nerve ; 37(6): 731-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18506711

RESUMO

The mdx mouse is an animal model for Duchenne muscular dystrophy (DMD). In order to evaluate possible treatments and to carry out genetic studies, it is essential to distinguish between mice that carry the dystrophic (mutant) or wild-type (wt) allele(s). The current amplification-resistant mutation system (ARMS) assay is labor intensive and yields false negatives, which reduces its efficiency as a screening tool. An alternate assay based on single-nucleotide polymorphism (SNP) primer extension technology (i.e., SNaPshot) is described. The SNaPshot assay has been optimized to identify both wild-type and mutant alleles, providing a robust, potentially automatable assay for high-throughput analysis.


Assuntos
Amplificação de Genes , Distrofia Muscular de Duchenne/genética , Análise de Sequência de DNA/métodos , Alelos , Sequência de Aminoácidos , Animais , DNA/biossíntese , DNA/genética , Análise Mutacional de DNA , Primers do DNA , DNA Polimerase Dirigida por DNA/biossíntese , DNA Polimerase Dirigida por DNA/genética , Didesoxinucleotídeos , Eletroforese Capilar , Corantes Fluorescentes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Dados de Sequência Molecular , Mutação , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Int J Legal Med ; 122(5): 421-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18581127

RESUMO

Null alleles can occur with any PCR-based STR typing system. They generally are due to deletions within the target region or primer binding sites or by primer binding site mutations that destabilize hybridization of at least one of the primers flanking the target region. Although not common, null types were detected at the DYS448 locus in seven out of 1,005 unrelated males in the Hispanic population. Of these DYS448 null types, four individuals displayed an apparent duplication at the DYS437 locus. The additional allele observed at the DYS437 locus is in actuality a smaller-sized DYS448 amplicon, which is the result of a deletion of the invariant N42 base pair domain and downstream repeats within the DYS448 locus. Thus, some DYS448 null types are not truly null. A true DYS448 null allele carried numerous primer binding site variants and a large deletion including the N42 base pair domain and surrounding or downstream repeat regions. The presence of null alleles is not a real concern for interpretation of Y STR loci evidence; current methods for interpreting Y STR profiles easily accommodate such phenomena.


Assuntos
Alelos , Cromossomos Humanos Y , Impressões Digitais de DNA , Sequências de Repetição em Tandem , Haplótipos , Humanos , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA