Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(4): 562-565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238558

RESUMO

Imaging large fields of view at a high magnification requires tiling. Transmission electron microscopes typically have round beam profiles; therefore, tiling across a large area is either imperfect or results in uneven exposures, a problem for dose-sensitive samples. Here, we introduce a square electron beam that can easily be retrofitted in existing microscopes, and demonstrate its application, showing that it can tile nearly perfectly and deliver cryo-electron microscopy imaging with a resolution comparable to conventional set-ups.


Assuntos
Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica de Transmissão
2.
Nat Methods ; 20(1): 131-138, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456783

RESUMO

In situ cryo electron tomography of cryo focused ion beam milled samples has emerged in recent years as a powerful technique for structural studies of macromolecular complexes in their native cellular environment. However, the possibilities for recording tomographic tilt series in a high-throughput manner are limited, in part by the lamella-shaped samples. Here we utilize a geometrical sample model and optical image shift to record tens of tilt series in parallel, thereby saving time and gaining access to sample areas conventionally used for tracking specimen movement. The parallel cryo electron tomography (PACE-tomo) method achieves a throughput faster than 5 min per tilt series and allows for the collection of sample areas that were previously unreachable, thus maximizing the amount of data from each lamella. Performance testing with ribosomes in vitro and in situ on state-of-the-art and general-purpose microscopes demonstrated the high throughput and quality of PACE-tomo.


Assuntos
Tomografia com Microscopia Eletrônica , Ribossomos , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química
3.
J Struct Biol ; 208(2): 107-114, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425790

RESUMO

The power of cryo-electron tomography (cryoET) lies in its capability to characterize macromolecules in their cellular context. Structure determination by cryoET, however, is time-consuming compared to single particle approaches. A recent study reported significant acceleration of data acquisition by a fast-incremental single-exposure (FISE) tilt series scheme. Here we improved the method and evaluated its efficiency and performance. We show that (1) FISE combined with the latest generation of direct electron detectors speeds up collection considerably, (2) previous generation (pre-2017) double-tilt axis Titan Krios holders are also suitable for FISE data acquisition, (3) x, y and z-specimen shifts can be compensated for, and (4) FISE tilt series data can generate averages of sub-nanometer resolution. These advances will allow for a widespread adoption of cryoET for high-throughput in situ studies and high-resolution structure determination across different biological research disciplines.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Algoritmos , Escherichia coli , Ribossomos/metabolismo , Ribossomos/ultraestrutura
4.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873376

RESUMO

Imaging large fields of view at a high magnification requires tiling. Transmission electron microscopes typically have round beam profiles; therefore, tiling across a large area is either imperfect or results in uneven exposures, a problem on dose-sensitive samples. Here, we introduce a square electron beam that can be easily retrofitted in existing microscopes and demonstrate its application, showing it can tile nearly perfectly and deliver cryo-EM imaging with a resolution comparable to conventional setups.

5.
Nat Microbiol ; 7(3): 397-410, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165385

RESUMO

Contractile injection systems (CISs) are phage tail-like nanomachines, mediating bacterial cell-cell interactions as either type VI secretion systems (T6SSs) or extracellular CISs (eCISs). Bioinformatic studies uncovered a phylogenetic group of hundreds of putative CIS gene clusters that are highly diverse and widespread; however, only four systems have been characterized. Here we studied a putative CIS gene cluster in the marine bacterium Algoriphagus machipongonensis. Using an integrative approach, we show that the system is compatible with an eCIS mode of action. Our cryo-electron microscopy structure revealed several features that differ from those seen in other CISs: a 'cap adaptor' located at the distal end, a 'plug' exposed to the tube lumen, and a 'cage' formed by massive extensions of the baseplate. These elements are conserved in other CISs, and our genetic tools identified that they are required for assembly, cargo loading and function. Furthermore, our atomic model highlights specific evolutionary hotspots and will serve as a framework for understanding and re-engineering CISs.


Assuntos
Sistemas de Secreção Tipo VI , Bacteroidetes , Microscopia Crioeletrônica , Filogenia , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/genética
6.
Nat Microbiol ; 7(3): 386-396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165386

RESUMO

Contractile injection systems (CISs) mediate cell-cell interactions by phage tail-like structures, using two distinct modes of action: extracellular CISs are released into the medium, while type 6 secretion systems (T6SSs) are attached to the cytoplasmic membrane and function upon cell-cell contact. Here, we characterized a CIS in the multicellular cyanobacterium Anabaena, with features distinct from extracellular CISs and T6SSs. Cryo-electron tomography of focused ion beam-milled cells revealed that CISs were anchored in thylakoid membrane stacks, facing the cell periphery. Single particle cryo-electron microscopy showed that this unique in situ localization was mediated by extensions of tail fibre and baseplate components. On stress, cyanobacteria induced the formation of ghost cells, presenting thylakoid-anchored CISs to the environment. Functional assays suggest that these CISs may mediate ghost cell formation and/or interactions of ghost cells with other organisms. Collectively, these data provide a framework for understanding the evolutionary re-engineering of CISs and potential roles of these CISs in cyanobacterial programmed cell death.


Assuntos
Cianobactérias , Sistemas de Secreção Tipo VI , Microscopia Crioeletrônica , Cianobactérias/metabolismo , Tomografia com Microscopia Eletrônica , Tilacoides/metabolismo , Sistemas de Secreção Tipo VI/metabolismo
7.
Nat Commun ; 12(1): 4333, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267200

RESUMO

Cryo-electron microscopy (cryo-EM) of small membrane proteins, such as G protein-coupled receptors (GPCRs), remains challenging. Pushing the performance boundaries of the technique requires quantitative knowledge about the contribution of multiple factors. Here, we present an in-depth analysis and optimization of the main experimental parameters in cryo-EM. We combined actual structural studies with methods development to quantify the effects of the Volta phase plate, zero-loss energy filtering, objective lens aperture, defocus magnitude, total exposure, and grid type. By using this information to carefully maximize the experimental performance, it is now possible to routinely determine GPCR structures at resolutions better than 2.5 Å. The improved fidelity of such maps enables the building of better atomic models and will be crucial for the future expansion of cryo-EM into the structure-based drug design domain. The optimization guidelines given here are not limited to GPCRs and can be applied directly to other small proteins.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Microscopia Crioeletrônica/instrumentação , Ouro , Processamento de Imagem Assistida por Computador
8.
Cell Rep ; 28(2): 295-301.e4, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291567

RESUMO

Many bacteria interact with target organisms using syringe-like structures called contractile injection systems (CISs). CISs structurally resemble headless bacteriophages and share evolutionarily related proteins such as the tail tube, sheath, and baseplate complex. In many cases, CISs mediate trans-kingdom interactions between bacteria and eukaryotes by delivering effectors to target cells. However, the specific effectors and their modes of action are often unknown. Here, we establish an ex vivo model to study an extracellular CIS (eCIS) called metamorphosis-associated contractile structures (MACs) that target eukaryotic cells. MACs kill two eukaryotic cell lines, fall armyworm Sf9 cells and J774A.1 murine macrophage cells, by translocating an effector termed Pne1. Before the identification of Pne1, no CIS effector exhibiting nuclease activity against eukaryotic cells had been described. Our results define a new mechanism of CIS-mediated bacteria-eukaryote interaction and are a step toward developing CISs as novel delivery systems for eukaryotic hosts.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos
9.
Elife ; 82019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31526475

RESUMO

The swimming larvae of many marine animals identify a location on the sea floor to undergo metamorphosis based on the presence of specific bacteria. Although this microbe-animal interaction is critical for the life cycles of diverse marine animals, what types of biochemical cues from bacteria that induce metamorphosis has been a mystery. Metamorphosis of larvae of the tubeworm Hydroides elegans is induced by arrays of phage tail-like contractile injection systems, which are released by the bacterium Pseudoalteromonas luteoviolacea. Here we identify the novel effector protein Mif1. By cryo-electron tomography imaging and functional assays, we observe Mif1 as cargo inside the tube lumen of the contractile injection system and show that the mif1 gene is required for inducing metamorphosis. Purified Mif1 is sufficient for triggering metamorphosis when electroporated into tubeworm larvae. Our results indicate that the delivery of protein effectors by contractile injection systems may orchestrate microbe-animal interactions in diverse contexts.


Assuntos
Proteínas de Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos , Metamorfose Biológica , Poliquetos/crescimento & desenvolvimento , Poliquetos/microbiologia , Pseudoalteromonas/metabolismo , Animais , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Poliquetos/efeitos dos fármacos , Transporte Proteico
11.
Nat Commun ; 8(1): 481, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883390

RESUMO

Bacteria release membrane vesicles (MVs) that play important roles in various biological processes. However, the mechanisms of MV formation in Gram-positive bacteria are unclear, as these cells possess a single cytoplasmic membrane that is surrounded by a thick cell wall. Here we use live cell imaging and electron cryo-tomography to describe a mechanism for MV formation in Bacillus subtilis. We show that the expression of a prophage-encoded endolysin in a sub-population of cells generates holes in the peptidoglycan cell wall. Through these openings, cytoplasmic membrane material protrudes into the extracellular space and is released as MVs. Due to the loss of membrane integrity, the induced cells eventually die. The vesicle-producing cells induce MV formation in neighboring cells by the enzymatic action of the released endolysin. Our results support the idea that endolysins may be important for MV formation in bacteria, and this mechanism may potentially be useful for the production of MVs for applications in biomedicine and nanotechnology.It is unclear how Gram-positive bacteria, with a thick cell wall, can release membrane vesicles. Here, Toyofuku et al. show that a prophage-encoded endolysin can generate holes in the cell wall through which cytoplasmic membrane material protrudes and is released as vesicles.


Assuntos
Bacillus subtilis/ultraestrutura , Peptidoglicano/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Parede Celular/ultraestrutura , Tomografia com Microscopia Eletrônica , Endopeptidases/metabolismo , Endopeptidases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA