RESUMO
The number of undesirable environmental impacts of fish feed has been reported widely. Although repeated fish feed exposures are more prospective to occur in water, previous studies were mostly conducted as a single exposure of fish feed. In order to fill these gaps, a 40 days incubator experiment was conducted to explore the effects of fish feed addition scenarios during the lag phase with prometryn on both Microcystis aeruginosa growth and concentrations of nutrients. The maximum algae densities in groups of single exposure were 6.0-26.2% and 8.8-74.4% higher than those in groups of double and triple exposures, respectively (P < 0.05). At the beginning of the experiment, concentrations of nutrients in groups with different feed exposure scenarios were significantly different. The pattern of nutrient limitation showed a transformation from phosphorus limitation to nitrogen limitation generally. Furthermore, the average inhibition rates of algae by prometryn in the case of a single fish feed exposure were 4.6-9.4% lower than those under double exposures, and 22.0-26.8% lower than those under triple exposures (P < 0.05). In addition, algae growth rates have been developed as a function of concentrations of consumed nutrients (R2 = 0.410-0.932). Based on the above results, we concluded that in terms of limiting algae growth multiple low-dosage additions of fish feed were considered as a better addition pattern. By optimizing feed addition scenarios, there is considerable potential to increase the environmental sustainability of aquaculture.
Assuntos
Ração Animal , Herbicidas/toxicidade , Microcystis/efeitos dos fármacos , Prometrina/toxicidade , Animais , Aquicultura/métodos , Peixes , Microcystis/crescimento & desenvolvimento , Nitrogênio/análise , Nutrientes , Fósforo/análise , Estudos Prospectivos , Qualidade da ÁguaRESUMO
Single exposure toxicity tests of herbicides like prometryn are commonly applied in studying ecological and environmental issues, but they are more likely exposed to microalgae through multiple applications of irrigation and water flow. The toxicity of prometryn towards Microcystis aeruginosa (M. aeruginosa) at different growth stages (different exposure period) was determined by single and multiple exposures (different exposure mode) through 39-day batch-experiment comparison study. Inhibition rates showed that M. aeruginosa growth was greatly inhibited by exposure to prometryn in a final concentration of 80 and 160 µg·L-1 (p < 0.05). Specifically, with the same prometryn exposure periods (lag or exponential phase) and concentrations, a single exposure displayed larger toxicity on M. aeruginosa than repetitive additions of prometryn in general according to inhibition rates. Moreover, with the same prometryn exposure modes and concentrations, inhibitory effect was higher with prometryn exposure in lag phase than that in exponential phase according to M. aeruginosa densities and inhibition rates. In general, variations of total dissolved phosphorus (TDP) and total dissolved nitrogen (TDN) with time responded negatively to M. aeruginosa growth, and added prometryn inhibits the utilization rate of both P and N. Logistic function was well used to describe algae densities (R2 = 0.979 ~ 0.995), growth rates (R2 = 0.515 ~ 0.731), specific growth rates (R2 = 0.301 ~ 0.648) and inhibition rates (R2 = 0.357 ~ 0.946) along with its combination with Monod function. In addition, results showed that shifts of limiting nutrients could be prompted by not only M. aeruginosa growth but also prometryn exposure scenarios. This study provides a basis for studying the potential harm of prometryn to the ecological environment.