RESUMO
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, ranking as the third most malignant. The incidence of CRC has been increasing with time, and it is reported that Westernized diet and lifestyle play a significant role in its higher incidence and rapid progression. The intake of high amounts of omega-6 (n - 6) PUFAs and low levels of omega-3 (n - 3) PUFAs has an important role in chronic inflammation and cancer progression, which could be associated with the increase in CRC prevalence. Oxylipins generated from PUFAs are bioactive lipid mediators and have various functions, especially in inflammation and proliferation. Carcinogenesis is often a consequence of chronic inflammation, and evidence has shown the particular involvement of n - 6 PUFA arachidonic acid-derived oxylipins in CRC, which is further described in this review. A deeper understanding of the role and metabolism of PUFAs by their modifying enzymes, their pathways, and the corresponding oxylipins may allow us to identify new approaches to employ oxylipin-associated immunomodulation to enhance immunotherapy in cancer. This paper summarizes oxylipins identified in the context of the initiation, development, and metastasis of CRC. We further explore CRC chemo-prevention strategies that involve oxylipins as potential therapeutics.
Assuntos
Neoplasias Colorretais , Inflamação , Oxilipinas , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/patologia , Oxilipinas/metabolismo , Inflamação/metabolismo , Animais , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/uso terapêuticoRESUMO
The gut microbiome plays a major role in human health, and gut microbial imbalance or dysbiosis is associated with disease development. Modulation in the gut microbiome can be used to treat or prevent different diseases. Gut dysbiosis increases with aging, and it has been associated with the impairment of gut barrier function leading to the leakage of harmful metabolites such as trimethylamine (TMA). TMA is a gut metabolite resulting from dietary amines that originate from animal-based foods. TMA enters the portal circulation and is oxidized by the hepatic enzyme into trimethylamine oxide (TMAO). Increased TMAO levels have been reported in elderly people. High TMAO levels are linked to peripheral artery disease (PAD), endothelial senescence, and vascular aging. Emerging evidence showed the beneficial role of probiotics and prebiotics in the management of several atherogenic risk factors through the remodeling of the gut microbiota, thus leading to a reduction in TMAO levels and atherosclerotic lesions. Despite the promising outcomes in different studies, the definite mechanisms of gut dysbiosis and microbiota-derived TMAO involved in atherosclerosis remain not fully understood. More studies are still required to focus on the molecular mechanisms and precise treatments targeting gut microbiota and leading to atheroprotective effects.
Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Humanos , Idoso , Disbiose , Metilaminas/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , EnvelhecimentoRESUMO
Gut-liver cross talk is an important determinant of human health with profound effects on energy homeostasis. While gut microbes produce a huge range of metabolites, specific compounds such as short-chain fatty acids (SCFAs) can enter the portal circulation and reach the liver (Brandl K, Schnabl B. Curr Opin Gastroenterol 33: 128-133, 2017), a central organ involved in glucose homeostasis and diabetes control. Propionate is a major SCFA involved in activation of intestinal gluconeogenesis (IGN), thereby regulating food intake, enhancing insulin sensitivity, and leading to metabolic homeostasis. Although microbiome-modulating strategies may target the increased microbial production of propionate, it is not clear whether such an effect spreads through to the hepatic cellular level. Here, we designed a propionate-producing consortium using a selection of commensal gut bacteria, and we investigated how their delivered metabolites impact an in vitro enterohepatic model of insulin resistance. Glycogen storage on hepatocyte-like cells and inflammatory markers associated with insulin resistance were evaluated to understand the role of gut metabolites on gut-liver cross talk in a simulated scenario of insulin resistance. The metabolites produced by our consortium increased glycogen synthesis by ~57% and decreased proinflammatory markers such as IL-8 by 12%, thus elucidating the positive effect of our consortium on metabolic function and low-grade inflammation. Our results suggest that microbiota-derived products can be a promising multipurpose strategy to modulate energy homeostasis, with the potential ability to assist in managing metabolic diseases due to their adaptability.
Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Propionatos/metabolismo , Biomarcadores , Citocinas/metabolismo , Trato Gastrointestinal/microbiologia , Glicogênio/metabolismo , Células Hep G2 , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Fígado/microbiologiaRESUMO
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that has been reported to have neuroprotective effects. The health effects of KD might be linked to an altered gut microbiome, which plays a major role in host health, leading to neuroprotective effects via the gut-brain axis. However, results from different studies, most often based on the 16S rRNA gene and metagenome sequencing, have been inconsistent. In this study, we assessed the effect of a 4-week KD compared to a western diet (WD) on the colonic microbiome of female C57Bl/6J mice by analyzing fecal samples using fluorescence in situ hybridization. Our results showed distinct changes in the total number of gut bacteria following the 4-week KD, in addition to changes in the composition of the microbiome. KD-fed mice showed higher absolute numbers of Actinobacteria (especially Bifidobacteria spp.) and lower absolute levels of Proteobacteria, often linked to gut inflammation, in comparison with WD-fed mice. Furthermore, an increased abundance of the typically rare genus Atopobium was observed. These changes may indicate the possible anti-inflammatory effects of the KD. However, since the overall changes in the microbiota seem low, the KD effects might be linked to the differential abundance of only a few key genera in mice.
Assuntos
Actinobacteria , Dieta Cetogênica , Microbiota , Fármacos Neuroprotetores , Feminino , Camundongos , Animais , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Dieta Hiperlipídica , Bactérias/genética , Actinobacteria/genética , Camundongos Endogâmicos C57BLRESUMO
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
RESUMO
Metabolic syndrome is a growing public health concern. Efforts at searching for links with the gut microbiome have revealed that propionate is a major fermentation product in the gut with several health benefits toward energy homeostasis. For instance, propionate stimulates satiety-inducing hormones, leading to lower energy intake and reducing weight gain and associated risk factors. In (disease) scenarios where microbial dysbiosis is apparent, gut microbial production of propionate may be decreased. Here, we investigated the effect of a propionogenic bacterial consortium composed of Lactobacillus plantarum, Bacteroides thetaiotaomicron, Ruminococcus obeum, Coprococcus catus, Bacteroides vulgatus, Akkermansia muciniphila, and Veillonella parvula for its potential to restore in vitro propionate concentrations upon antibiotic-induced microbial dysbiosis. Using the mucosal simulator of the human intestinal microbial ecosystem (M-SHIME), we challenged the simulated colon microbiome with clindamycin. Addition of the propionogenic consortium resulted in successful colonization and subsequent restoration of propionate levels, while a positive effect on the mitochondrial membrane potential (ΔΨm) was observed in comparison with the controls. Our results support the development and application of next generation probiotics, which are composed of multiple bacterial strains with diverse functionality and phylogenetic background.
RESUMO
The link between gut microbiota and human health is well-recognized and described. This ultimate impact on the host has contributed to explain the mutual dependence between humans and their gut bacteria. Gut microbiota can be manipulated through passive or active strategies. The former includes diet, lifestyle, and environment, while the latter comprise antibiotics, pre- and probiotics. Historically, conventional probiotic strategies included a phylogenetically limited diversity of bacteria and some yeast strains. However, biotherapeutic strategies evolved in the last years with the advent of fecal microbiota transplant (FMT), successfully applied for treating CDI, IBD, and other diseases. Despite the positive outcomes, long-term effects resulting from the uncharacterized nature of FMT are not sufficiently studied. Thus, developing strategies to simulate the FMT, using characterized gut colonizers with identified phylogenetic diversity, may be a promising alternative. As the definition of probiotics states that the microorganism should have beneficial effects on the host, several bacterial species with proven efficacy have been considered next generation probiotics. Non-conventional candidate strains include Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, and members of the Clostridia clusters IV, XIVa, and XVIII. However, viable intestinal delivery is one of the current challenges, due to their stringent survival conditions. In this review, we will cover current perspectives on the development and assessment of next generation probiotics and the approaches that industry and stakeholders must consider for a successful outcome.
RESUMO
The aim of this work was to investigate the relationship between the structure of gut microbial communities fed with different diets (i.e. high-protein-HP- versus high-fiber-HF-diet) and their functional stability when challenged with mild and acute doses of a mix of amoxicillin, ciprofloxacin, and tetracycline. We made use of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)-a continuous model of the gastrointestinal tract-coupled with 16S-targeted Illumina and metabolomics (i.e. UHPLC-HRMS) analyses. Independently of the diet, the sudden exposure to an acute stress led to a modification of the microbial community structure, selecting for species belonging to Bacillus spp.; Clostridium cluster XIVa; Enterococci; Bacteroides; and Enterobacteriaceae. The antibiotic treatment led to a decrease in the number of operational taxonomic units (at least -10%). Cluster analysis of untargeted metabolic data showed that the antibiotic treatment affected the microbial activity. The impact on metabolites production was lower when the community was preexposed to mild doses of the antibiotic mix. This effect was stronger in the proximal colon for the HF diet and in the distal colon for the HP diet. Different diets shaped different gut microbial communities, which ecologically behaved similarly under stress conditions.