Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Toxicol Appl Pharmacol ; 490: 117038, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019095

RESUMO

Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3ß/ß-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/ß-catenin signaling pathways.

2.
Saudi Pharm J ; 32(6): 102073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38681737

RESUMO

The current study explored the protective potential of kaempferol 3-sophoroside-7-glucoside (KSG) against acute lung injury (ALI). Pre-treatment with KSG effectively secured mice from ALI and showed similar efficaciousness to dexamethasone. KSG markedly increased the survival rate and alleviated lung pathological lesions induced by lipopolysaccharide (LPS). Furthermore, KSG attenuated differential and total cell counts in BALF (bronchoalveolar lavage fluid) and MPO (myeloperoxidase) activity. KSG counteracted the NF-κB (nuclear factor-κB) activation and significantly ameliorated the downstream inflammatory cytokine, TNF-α (tumor necrosis factor-α). Simultaneously, KSG suppressed the over-expression of NLRP3 (NOD-like receptor protein 3), caspase-1, and pro-inflammatory cytokine interleukin IL-1ß (interleukine-1ß) and prohibited the elevation of the pyroptotic parameter GSDMD-N (N-terminal domain of gasdermin D) induced by LPS challenge. In addition, KSG significantly enhanced Nrf2 (nuclear-factor erythroid-2-related factor) and HO-1 (heme-oxygenase-1) expression. Meanwhile, KSG mitigated lipid peroxidative markers (malondialdehyde, protein carbonyl and 4-hydroxynonenal) and boosted endogenous antioxidants (superoxide dismutase/reduced glutathione/catalase) in lung tissue. In silico analyses revealed that KSG disrupts Keap1-Nrf2 protein-protein interactions by binding to the KEAP1 domain, consequently activating Nrf2. Specifically, molecular docking demonstrated superior binding affinity of KSG to KEAP1 compared to the reference inhibitor, with docking scores of -9.576 and -6.633 Kcal/mol, respectively. Additionally, the MM-GBSA binding free energy of KSG (-67.25 Kcal/mol) surpassed that of the reference inhibitor (-56.36 Kcal/mol). Furthermore, MD simulation analysis revealed that the KSG-KEAP1 complex exhibits substantial and stable binding interactions with various amino acids over a duration of 100 ns. These findings showed the protective anti-inflammatory and anti-oxidative modulatory efficiencies of KSG that effectively counteracted LPS-induced ALI and encouraged future research and clinical applications of KSG as a protective strategy for ALI.

3.
J Clin Lab Anal ; 37(7): e24881, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37096731

RESUMO

INTRODUCTION: The management of hospitalized COVID-19 patients depends largely on controlling the intensified inflammatory response known as the cytokine storm. Candidate inflammatory cytokines can serve as new biomarkers for the management of hospitalized COVID-19 patients. METHODS: Patients (80) were recruited into three groups: room air (RA), oxygen (OX) and mechanical ventilator (MV). Blood analysis was performed for RBC, WBC, Hb, Platelets, serum albumin and creatinine, INR, PTT, and hematocrit. ELISA was used to quantify a panel of inflammatory mediators including GM-SCF, IFN-α, IFNγ, IL-1ß, IL-1R, IL-2, IL-2Ra, IL-6, IL-8, IL-10, IL-12p70, IL-13, MCP-1, MIP-1a, and TNF-α. Correlations between laboratory results and the levels of circulating inflammation mediators were investigated. RESULTS: Patients on MV had low RBC, Hb, albumin, and HCT and high WBC count, PTT, and INR when compared to RA and OX groups. A statistical positive correlation was found between WBC and the levels of IL-6 and MCP-1. RBCs correlated negatively with IL-6 and IL-10 and positively with IL-8. Higher TNF-α correlated with lower platelet counts while higher levels of IL-1Rα and IL-10 were associated with lower Hb levels. Increases in IFN-γ and TNF-α were indicative of compromised kidney functions as creatinine levels increased significantly. Most significant correlations were found between IL-6 and lab results, showing positive correlation with WBC and INR, and negative correlation with RBC, albumin, and HCT. CONCLUSIONS: Having the most significant correlations, IL-6 high levels in mechanically ventilated patients were shown to affect laboratory results, and, therefore, is suggested as a severity biomarker of COVID-19.


Assuntos
COVID-19 , Interleucina-10 , Humanos , Albuminas , Biomarcadores , Creatinina , Síndrome da Liberação de Citocina , Citocinas , Mediadores da Inflamação , Interleucina-6 , Interleucina-8 , Fator de Necrose Tumoral alfa
4.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838749

RESUMO

The discovery of natural drug metabolites is a leading contributor to fulfilling the sustainable development goal of finding solutions to global health challenges. Depsidones are a class of polyketides that have been separated from lichens, fungi, sponges, and plants and possess various bioactivities, including cytotoxic, antimicrobial, antimalarial, antituberculosis, acetylcholinesterase and α-glucosidase inhibition, and anti-inflammatory effects. Endocannabinoid receptors (CB1 and CB2) are G-protein-coupled receptors (GPCRs), and their activation mediates many physiological processes. CB1 is the dominant subtype in the central nervous system, while CB2 is mainly expressed in the immune system. The two receptors exhibit high heterogeneity, making developing selective ligands a great challenge. Attempts to develop CB2 selective agonists for treating inflammatory diseases and neuropathic pain have not been successful due to the high homology of the binding sites of the CB receptors. In this work, 235 depsidones from various sources were investigated for the possibility of identifying CB2-selective agonists by performing multiple docking studies, including induced fit docking and Prime/molecular mechanics-generalized Born surface area (MM-GBSA) calculations to predict the binding mode and free energy. Simplicildone J (10), lobaric acid (110), mollicellin Q (101), garcinisidone E (215), mollicellin P (100), paucinervin Q (149), and boremexin C (161) had the highest binding scores (-12.134 kcal/mol, -11.944 kcal/mol, -11.479 kcal/mol, -11.394 kcal/mol, -11.322 kcal/mol, -11.305 kcal/mol, and -11.254 kcal/mol, respectively) when screened against the CB2 receptor (PDB ID: 6KPF). The molecular dynamic simulation was performed on the compounds with the highest binding scores. The computational outcomes show that garcinisidone E (215) and paucinervin Q (149) could be substantial candidates for CB2 receptor activation and warrant further in vivo and in vitro investigations.


Assuntos
Agonistas de Receptores de Canabinoides , Simulação de Dinâmica Molecular , Agonistas de Receptores de Canabinoides/química , Receptor CB2 de Canabinoide , Acetilcolinesterase , Ligantes , Receptor CB1 de Canabinoide , Simulação de Acoplamento Molecular
5.
Medicina (Kaunas) ; 59(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512162

RESUMO

Background and objectives: Oleanolic acid (OA) is a penta-cyclic triterpene with diverse bioactivities such as anticarcinogenic, antiviral, antimicrobial, hepatoprotective, anti-atherosclerotic, hypolipidemic, and gastroprotective. However, its effects on hepatorenal damage remain unclear. The protective activity of OA, separated from Viscum schimperi (Loranthaceae), against TAA (thioacetamide)-produced acute hepatic and renal damage was explored. Materials and Methods: Mice were treated with OA for 7 days before TAA (200 mg/kg, i.p.). Serum indices of hepatorenal injury, pathological lesions, molecular biological indexes, and inflammatory/apoptotic genes were estimated. Results: The tissues of both organs were greatly affected by the TAA injection. That was evident through increased serum markers of hepato-renal injury as well as remarkable histopathological lesions. TAA-induced injury was associated with oxidative and inflammatory responses in both organs as there was an elevation of oxidative stress parameters (4-HNE (4-hydroxy-nonenal), MDA (malondialdehyde), NOx (nitric oxide)), decline of antioxidants (reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC)), and an increase in the gene expression/level of inflammatory mediators (interleukins (1ß&6)). The inflammatory response was linked to a significant activation of NF-κB (nuclear-factor kappa-B)/TNF-α (tumor-necrosis factor-alpha) signaling. The inflammatory response in both organs was accompanied by apoptotic changes, including a rise in the gene expression and level of apoptotic parameters (caspase-3 and Bax) along with a decline in Bcl-2 (anti-apoptotic parameter) gene expression and level. These pathogenic events were found to be closely related to the suppression of the antioxidant signaling pathway, Nrf2 (nuclear-factor erythroid 2-related factor-2)/SIRT1 (sirtuin-1)/HO-1 (heme-oxygenase 1). On the other hand, OA significantly ameliorated TAA-induced injury in both organs. On the other hand, OA counterpoised the inflammatory response as it ameliorated NF-κB/TNF-α signaling and cytokine release. OA enhanced Nrf2/SIRT1/HO-1 signaling and counteracted apoptotic damage. Conclusions: OA showed anti-inflammation and antiapoptotic capacities that effectively suppressed TAA-induced acute hepatorenal damage.


Assuntos
NF-kappa B , Ácido Oleanólico , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Estresse Oxidativo , Transdução de Sinais , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Inflammopharmacology ; 28(1): 153-163, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31218570

RESUMO

Tovophyllin A (TA) is a xanthone isolated from Garcinia mangostana L. (GM, Guttiferae) pericarps that possesses various beneficial bioactivities. However, its protective effects on acute lung injury (ALI) and lung carcinoma have not yet been explored. The current work was designed to investigate the protective potential of TA against ALI and explore the possible mechanism of action. Two different doses of TA were tested against lipopolysaccharide (LPS)-induced ALI in mice. Moreover, the cytotoxic potential of TA was assessed in epithelial lung (A549 cells) and breast (MCF7 cells) carcinomas utilizing a sulforhodamine B (SRB) assay. The results revealed that TA possessed the ability to protect against LPS-induced acute lung damage. TA attenuated LPS-induced pulmonary edema, as it lowered the protein content in the bronchoalveolar lavage fluid (BALF) and the lung W/D ratio. In addition, TA counteracted inflammatory cell infiltration into the lung tissue, as shown by the total and differential cell counts in the BALF and histopathological examination of the lungs. The oxidative burden in the pulmonary tissue was ameliorated in TA-treated animals as there were reductions in the malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels in the lung tissue. TA increased the levels of antioxidants such as reduced glutathione (GSH) and superoxide dismutase (SOD) in the lungs. Furthermore, TA inhibited the activation of nuclear factor-κB (NF-κB). In addition, TA had potent anti-inflammatory activity as it reduced the immunoexpression and levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6. Furthermore, TA showed significantly enhanced cytotoxic activity against the MCF-7 and A549 cell lines with IC50s of 6.1 and 2.2 µM, respectively, compared to doxorubicin (IC50s of 0.41 and 0.74 µM, respectively). In conclusion, TA ameliorates LPS-induced ALI through the suppression of oxidative stress and inflammation. These findings suggest the potential use of this compound as a future treatment for ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inflamação/tratamento farmacológico , Substâncias Protetoras/farmacologia , Células A549 , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células MCF-7 , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Xantonas/farmacologia
7.
Cell Physiol Biochem ; 47(2): 523-534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794447

RESUMO

BACKGROUND/AIMS: Phosphodiesterase-5 inhibitors have beneficial effects in multiple liver diseases possibly through the reduction of oxidative stress and inflammatory response. However, these effects have not yet been examined in cholestatic liver dysfunction. Hence, this study aimed to explore the ability of vardenafil, a known phosphodiesterase-5 inhibitor, to repress lithocholic acid (LCA)-induced cholestatic liver injury and investigate the possible molecular pathways. METHODS: Male Swiss albino mice were treated with LCA (0.125 mg/g) twice daily for 7 days to induce cholestatic liver damage. Vardenafil was administered 3 days before and throughout the administration of LCA. Serum markers of hepatotoxicity and hepatic nitro-oxidative stress along with antioxidant parameters were measured, and the histopathology of liver tissues was assessed. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target genes was examined using PCR. The activation of nuclear factor kappa-B (NF-κB) and the levels of inflammatory cytokines were determined. NLRP3 inflammasome and its components were studied by PCR and western blot. RESULTS: LCA induced marked cholestatic liver damage as demonstrated by increased serum transaminases, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin, and bile acids. Examination of liver specimens confirmed the biochemical results. Nitro-oxidative stress parameters were significantly elevated along with reduced antioxidant capacity in hepatic tissue following LCA administration. LCA suppressed Nrf2 and its target genes and decreased the mRNA expression and binding capacity of Nrf2 as well as the mRNA expression of GCLm, GCLc, Nqo1, and HO-1. Additionally, LCA enhanced the activation of NF-κB, which was accompanied by elevations of inflammatory cytokines. Importantly, LCA induced the activation of NLRP3 inflammasome. LCA increased the expression of NLRP3, ASC, caspase-1, and IL-1ß genes and proteins in hepatic tissue. The activities of IL-1ß and caspase-1 were increased in the LCA group. Interestingly, vardenafil ameliorated LCA-induced hepatic injury and alleviated all biochemical, histopathological, and inflammatory parameters. CONCLUSIONS: These data elucidated the effects of Nrf2 inhibition and NLRP3 inflammasome activation in LCA-induced liver injury. The hepatoprotective activity of vardenafil in LCA-induced cholestatic damage may result from the drug's ability to activate Nrf2 signaling and prevent the activation of NLRP3, which could suppress the inflammatory responses in hepatic tissue. Thus, vardenafil can be considered a novel anti-inflammatory remedy for cholestatic liver damage.


Assuntos
Anti-Inflamatórios/farmacologia , Hepatopatias/patologia , Fígado/efeitos dos fármacos , Dicloridrato de Vardenafila/farmacologia , Fosfatase Alcalina/sangue , Animais , Antioxidantes/metabolismo , Caspase 1/metabolismo , Colestase/induzido quimicamente , Colestase/complicações , Citocinas/sangue , Citocinas/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Ácido Litocólico/toxicidade , Fígado/metabolismo , Fígado/patologia , Hepatopatias/complicações , Hepatopatias/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transaminases/sangue
8.
J Biochem Mol Toxicol ; 32(12): e22227, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273971

RESUMO

Valproate is a widely used drug against epilepsy and several other neurological disorders although it has deleterious hepatotoxic side effects. The current study was designed to test if agmatine as nitric oxide modulator has protective effects against valproate-induced hepatic injury. Male Swiss albino mice were treated with sodium valproate (SVP) with or without agmatine for 7 days. Serum and liver samples were collected for analysis. Results have revealed that agmatine exerted hepatoprotective effects against SVP-associated hepatic injury. Agmatine ameliorated SVP-induced elevated serum biochemical markers of hepatic damage such as serum transaminases, alkaline phosphatase, γ-glutamyl transferase, and lactate dehydrogenase. Histopathological examination of the liver showed improvement of hepatic lesions in case of agmatine treatment. Furthermore, agmatine attenuated oxidative stress and enhanced antioxidants in liver tissue. Agmatine inhibited the activation of nuclear factor-κB and ameliorated the immunoexpression of inducible nitric oxide synthetase. This was accompanied by decrease in the level of inflammatory markers as nitrite/nitrate, tumor necrosis factor-α, and interleukin-6. These data provide new evidence of the hepatoprotective activity of agmatine against SVP-induced hepatotoxic effects.


Assuntos
Agmatina/farmacologia , Anticonvulsivantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Valproico/toxicidade , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , L-Lactato Desidrogenase/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , gama-Glutamiltransferase/sangue
9.
J Biochem Mol Toxicol ; 31(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27762466

RESUMO

Vardenafil is a selective phosphodiesterase-5 inhibitor used for erectile dysfunction treatment. The hepatoprotective role of vardenafil against acute hepatitis is not reported yet. Hence, this study aims to explore the protective role of vardenafil against concanavalin A (Con A) induced acute liver injury. Mice were pretreated with vardenafil (0.17 mg/kg/day) for seven consecutive days, and then subjected to a single IV injection of Con A. The results demonstrated that the vardenafil pretreatment significantly reduced the elevated serum levels of transaminases and alkaline phosphatase. Histopathological examination showed marked necrosis and inflammation in Con A-treated mice which was significantly ameliorated in vardenafil pretreated animals. Vardenafil pretreatment significantly alleviated the expression of nuclear factor kappa-B and inducible nitric oxide synthase in the hepatic tissue. Additionally, serum levels of nitric oxide and tumor necrosis factor-alpha were decreased in vardenafil pretreated animals compared to the Con A group. Therefore, our results demonstrate that vardenafil has hepatoprotective effect and this could be linked to decrease inflammatory mediators.


Assuntos
Hepatite/tratamento farmacológico , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Dicloridrato de Vardenafila/administração & dosagem , Fosfatase Alcalina/sangue , Animais , Concanavalina A/toxicidade , Modelos Animais de Doenças , Disfunção Erétil/tratamento farmacológico , Hepatite/sangue , Hepatite/patologia , Inflamação/sangue , Inflamação/induzido quimicamente , Inflamação/patologia , Fígado/patologia , Masculino , Camundongos , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo II/sangue , Transaminases/sangue , Fator de Necrose Tumoral alfa/sangue
10.
Inflammopharmacology ; 22(3): 187-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23989863

RESUMO

Fulminant hepatic failure (FHF) is a life-threatening syndrome characterized by massive hepatic necrosis and high mortality. There is no effective therapy for the disease other than liver transplantation. This study aimed to investigate the effect of agmatine, inducible nitric oxide synthase (iNOS) inhibitor, on D-galactosamine and lipopolysaccharide (GalN/LPS)-induced FHF in mice and explore its possible mechanism(s). Male Swiss albino mice were injected with a single dose agmatine (14 mg/kg, IP) 8 h prior to challenge with a single intraperitoneal injection of both GalN (800 mg/kg) and LPS (50 µg/kg). Agmatine significantly attenuated all GalN/LPS-induced biochemical and pathological changes in liver. It prevented the increase of serum transaminases and alkaline phosphatase (ALP). In addition, agmatine markedly attenuated GalN/LPS-induced necrosis and inflammation. Agmatine significantly reduced oxidative stress and enhanced antioxidant enzymes. Importantly, agmatine decreased total nitric oxide (NO) and pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α). These findings reveal that agmatine has hepatoprotective effects against GalN/LPS-induced FHF in mice that may be related to its ability to suppress oxidative stress, NO synthesis and TNF-α production. Therefore, agmatine may serve as a novel therapeutic strategy for hepatic inflammatory diseases.


Assuntos
Agmatina/uso terapêutico , Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/prevenção & controle , Animais , Falência Hepática Aguda/patologia , Masculino , Camundongos , Substâncias Protetoras/uso terapêutico
11.
Toxicology ; 507: 153889, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029735

RESUMO

Intrahepatic cholestasis is a common clinical form of hepatobiliary injury characterized by the intrahepatic accumulation of toxic bile acids. Besides its antidiabetic activity, the dipeptidyl peptidase IV inhibitor sitagliptin (SG) has been recently assigned diverse pharmacological activities and therapeutic potential against different disorders owing to its emerging antioxidant and anti-inflammatory properties. The current study explored the potential hepatoprotective effect of SG on α-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and investigate its possible targeted signaling pathways. Mice received SG (10 and 20 mg/kg) for four consecutive days, two days before and after a single oral administration of ANIT (75 mg/kg). Our results revealed that SG administration remarkably prevented ANIT-induced histopathological lesions in the liver and maintained hepatic functions and oxidative/antioxidant balance. Ultimately, SG counteracted the inflammatory response in the liver, as indicated by the marked suppression of hepatic expression of NF-κB, TNF-α, and IL-6. Moreover, it inhibited the endoplasmic reticulum (ER) stress response in the liver. These beneficial effects of SG were accompanied by upregulation of SIRT1, p-AMPK, and Nrf2 expressions while downregulating keap1 expression in the liver. In conclusion, this study is the first to demonstrate the ability of SG to protect against ANIT-induced CLI through modulating multiple signaling cascades, including SIRT1/AMPK, Nrf2/keap1, and NF-кB, which resulted in enhanced antioxidant capacity and repressed inflammatory and ER stress responses in the liver.

12.
Int Immunopharmacol ; 130: 111732, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38402834

RESUMO

Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.


Assuntos
Falência Hepática Aguda , NF-kappa B , Tomatina/análogos & derivados , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Fígado , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Necrose/metabolismo , Galactosamina/farmacologia
13.
Heliyon ; 10(10): e31448, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813141

RESUMO

APAP (Acetaminophen)-induced hepatic injury is a major public health threat that requires continuous searching for new effective therapeutics. KSG (Kaempferol-3-sophoroside-7-glucoside) is a kaempferol derivative that was separated from plant species belonging to different genera. This study explored the protective effects of KSG on ALI (acute liver injury) caused by APAP overdose in mice and elucidated its possible mechanisms. The results showed that KSG pretreatment alleviated APAP-induced hepatic damage as it reduced hepatic pathological lesions as well as the serum parameters of liver injury. Moreover, KSG opposed APAP-associated oxidative stress and augmented hepatic antioxidants. KSG suppressed the inflammatory response as it decreased the genetic and protein expression as well as the levels of inflammatory cytokines. Meanwhile, KSG enhanced the mRNA expression and level of anti-inflammatory cytokine, IL-10 (interleukin-10). KSG repressed the activation of NF-κB (nuclear-factor kappa-B), besides it promoted the activation of Nrf2 signaling. Additionally, KSG markedly hindered the elevation of ASK-1 (apoptosis-signal regulating-kinase-1) and JNK (c-Jun-N-terminal kinase). Furthermore, KSG suppressed APAP-induced apoptosis as it decreased the level and expression of Bax (BCL2-associated X-protein), and caspase-3 concurrent with an enhancement of anti-apoptotic protein, Bcl2 in the liver. More thoroughly, Computational studies reveal indispensable binding affinities between KSG and Keap1 (Kelch-like ECH-associated protein-1), ASK1 (apoptosis signal-regulating kinase-1), and JNK1 (c-Jun N-terminal protein kinase-1) with distinctive tendencies for selective inhibition. Taken together, our data showed the hepatoprotective capacity of KSG against APAP-produced ALI via modulation of Nrf2/NF-κB and JNK/ASK-1/caspase-3 signaling. Henceforth, KSG could be a promising hepatoprotective candidate for ALI.

14.
Biology (Basel) ; 12(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37508369

RESUMO

Cepabiflas B and C (CBs) are flavonoid dimers separated from Allium cepa. They demonstrated antioxidant and α-glucosidase and protein tyrosine phosphatase 1B inhibition capacities. However, their anti-inflammatory activities and their effects on endotoxemia are unknown. The current study aimed at exploring the protective activities of CBs on lipopolysaccharide (LPS)-induced kidney and liver damage in mice and investigating the possible molecular mechanisms. Mice were orally treated with a low (40 mg/kg) or high (60 mg/kg) dose of CBs for five days prior to a single intraperitoneal injection of LPS (10 mg/kg). Samples of serum and hepatic and kidney tissues were collected 24 h after the LPS challenge. Changes in serum indices of hepatic and renal injury, pathological changes, molecular biological parameters, and proteins/genes related to inflammation and apoptosis of these organs were estimated. LPS injection resulted in deleterious injury to both organs as indicated by elevation of serum ALT, AST, creatinine, and BUN. The deteriorated histopathology of hepatic and renal tissues confirmed the biochemical indices. CBs treated groups showed a reduction in these parameters and improved histopathological injurious effects of LPS. LPS-induced hepatorenal injury was linked to elevated oxidative stress as indicated by high levels of MDA, 4-HNE, as well as repressed antioxidants (TAC, SOD, and GSH) in hepatic and kidney tissues. This was accompanied with suppressed Nrf2/HO-1 activity. Additionally, there was a remarkable inflammatory response in both organs as NF-κB signalling was activated and high levels of downstream cytokines were produced following the LPS challenge. Apoptotic changes were observed as the level and gene expression of Bax and caspase-3 were elevated along with declined level and gene expression of Bcl2. Interestingly, CBs reversed all these molecular and genetic changes and restricted oxidative inflammatory and apoptotic parameters after LPS-injection. Collectedly, our findings suggested the marked anti-inflammatory and anti-apoptotic activity of CBs which encouraged its use as a new candidate for septic patients.

15.
Life Sci ; 322: 121663, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023956

RESUMO

γ-Mangostin (γ-MN) is one of the abundant xanthones separated from Garcinia mangostana (Clusiaceae) pericarps that has been reported to have varied bioactivities such as neuroprotective, cytotoxic, antihyperglycemic, antioxidant, and anti-inflammation. Yet, its effect on cholestatic liver damage (CLI) has not been investigated. This study explored the protective activity of γ-MN against alpha-naphthyl isothiocyanate (ANIT)-induced CLI in mice. The results showed that γ-MN protected against ANIT-induced CLI as indicated by reduced serum levels of hepatic injury parameters (e.g., ALT, AST, γ-GT, ALP, LDH, bilirubin, and total bile acids). ANIT-induced pathological lesions were improved in γ-MN pre-treated groups. γ-MN exerted potent antioxidant effects as it lowered the parameters of lipid peroxidation (4-HNE, PC, and MDA) and intensified the content and activity of antioxidants (TAC, GSH, GSH-Px, GST, and SOD) in the hepatic tissue. Furthermore, γ-MN enhanced the signalling of Nrf2/HO-1 as it augmented the mRNA expression of Nrf2/downstream genes (HO-1/GCLc/NQO1/SOD). The binding capacity and the immuno-expression of Nrf2 were also increased. γ-MN showed anti-inflammatory capacity as it suppressed the activation of NF-κB signalling, it decreased mRNA expression and levels of NF-κB/TNF-α/IL-6 and the immuno-expression of NF-κB/TNF-α. In addition, γ-MN inhibited the activation of NLRP3 inflammasome as it lowered the mRNA expression of NLRP3/caspase-1/IL-1ß along with their levels as well as the immuno-expression of caspase-1/IL-1ß. γ-MN also reduced the level of the pyroptotic parameter GSDMD. Collectively, this study demonstrated the potent hepatoprotective potential of γ-MN against CLI which was linked to its ability to potentiate Nrf2/HO-1 and to offset NF-κB/NLRP3/Caspase-1/IL-1ß/GSDMD. Hence, γ-MN may be suggested as a new candidate for cholestatic patients.


Assuntos
Colestase , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Colestase/metabolismo , Antioxidantes/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo
16.
J Ethnopharmacol ; 292: 115223, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35354089

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cucurbitacins are highly oxygenated tetracyclic triterpenoids, that represent the major metabolites reported from C. colocynthis (L.) Schrad.. Cucurbitacin E glucoside (CuE) is a tetracyclic triterpene glycoside separated from Cucurbitaceae plants. CuE has potent anti-inflammatory, immunomodulatory, and anti-tumor properties. AIM OF THE STUDY: The current study aimed at examining the hepatoprotective effect of CuE against concanavalin A (Con A)-produced hepatitis. MATERIALS AND METHODS: Mice were intravenously administered Con A (15 mg/kg) to induce AIH. CuE was orally administered at two different doses for five days preceding Con A injection. RESULTS: The results revealed that CuE pretreatment markedly attenuated the serum indices of hepatotoxicity and the severity of hepatic lesions. CuE depressed Con A-provoked increment in CD4+ T-cells in hepatic tissue. The antioxidant activity of CuE was evident through its ability to decrease markers of Con A-induced oxidative stress (malondialdehyde, 4-hydroxyenonanal, and protein carbonyl) and intensified the antioxidants in the hepatic tissue (SOD, GSH, and TAC). CuE increased mRNA expression of SIRT1 and Nrf2 as well as its binding capacity. Subsequently, CuE augmented mRNA expression of Nrf2 targeted genes as NQO1, GCL, and HO-1 and recovered its normal level. CuE inhibited the activation of NF-κB/downstream pro-inflammatory mediators signaling. Furthermore, CuE attenuated the mRNA expression of NLRP3 and its associated genes. CONCLUSION: Collectively, these results demonstrated the remarkable hepatoprotective potential of CuE towards Con A-induced AIH which was mediated via suppression of oxidative stress, enhancing SIRT1/Nrf2/HO-1, and prohibition of the NF-κB/NLRP3 signaling. CuE could be a candidate for hepatitis patients.


Assuntos
Hepatite , Triterpenos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Concanavalina A/metabolismo , Concanavalina A/farmacologia , Glucosídeos/farmacologia , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico
17.
Biology (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-36101327

RESUMO

BACKGROUND: Multisystem Inflammatory Syndrome in Children (MIS-C) is a novel syndrome associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with varying clinical features. This study aimed to analyze the expression profiles of cytokines in blood, report the important clinical characteristics, and correlate these with the short- and mid-term outcomes. METHODS: This cross-sectional study was conducted on hospitalized children with MIS-C from March 2021 to May 2022. Phenotypes were classified into two groups (A,B) according to the severity of the disease and the need for invasive respiratory support. Clinical features, laboratory parameters, and outcomes were reported. RESULTS: We identified 60 children with MIS-C (mean age of 7.4 ± 3.8 years) compared to 30 age- and sex-matched controls with simple COVID-19. The clinical manifestations of MIS-C patients were fever (100%), respiratory (83.3%), GIT (80%), and conjunctivitis (80%). Twenty-seven MIS-C children (45%) required PICU admission due to shock and needed mechanical ventilation. Anemia, lymphopenia, and elevated levels of inflammatory and tissue injury markers were observed in the MIS-C groups (mainly B). High cytokine levels (IL-1ß, IL-6, IFN-α, GM-CSF, and HMGB1) were observed acutely in the MIS-C children, and a persistent elevation of some cytokines were reported at midterm follow-up, especially in Group B. CONCLUSION: Robust inflammatory response to COVID-19 disease with elevated IL-1ß, IL-6, and GM-CSF levels might explain the severity and outcome of the clinical syndrome.

18.
Nutrients ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615674

RESUMO

Garcinia mangostana L. (Clusiaceae), a popular tropical fruit for its juiciness and sweetness, is an opulent fountain of prenylated and oxygenated xanthones with a vast array of bio-activities. Garcinone E (GE), a xanthone derivative reported from G. mangostana, possesses cytotoxic and aromatase inhibitory activities. The present research endeavors to investigate the hepato-protection efficaciousness of GE on concanavalin-A (Con-A)-instigated hepatitis. Results showed that GE pretreating noticeably diminishes both the serum indices (transaminases, ALP, LDH, and γ-GT) and histopathological lesions of the liver. It counteracted neutrophil and CD4+ infiltration into the liver. GE furthered the Nrf2 genetic expression and its antioxidants' cascade, which resulted in amelioration of Con-A-caused oxidative stress (OS), lipid per-oxidative markers (4-HNE, MDA, PC) reduction, and intensified antioxidants (TAC, SOD, GSH) in the hepatic tissue. Additionally, GE prohibited NF-ĸB (nuclear factor kappa-B) activation and lessened the genetics and levels of downstream cytokines (IL1ß and IL6). Moreover, the TNF-α/JNK axis was repressed in GE-treated mice, which was accompanied by attenuation of Con-A-induced apoptosis. These findings demonstrated the protective potential of GE in Con-A-induced hepatitis which may be associated with Nrf2/HO-1 signaling activation and OS suppression, as well as modulation of the NF-κB and TNF-α/JNK/apoptosis signaling pathway. These results suggest the potential use of GE as a novel hepato-protective agent against autoimmune hepatitis.


Assuntos
Hepatite Autoimune , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Hepatite Autoimune/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores da Aromatase , Fígado/metabolismo , Estresse Oxidativo
19.
Plants (Basel) ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145841

RESUMO

Alpha-mangostin (α-MN) is a xanthone obtained from Garcinia mangostana that has diverse anti-oxidative and anti-inflammatory potentials. However, its pharmacological activity against autoimmune hepatitis (AIH) has not been investigated before. Concanavalin A (Con A) was injected into mice to induce AIH and two doses of α-MN were tested for their protective effects against Con A-induced AIH. The results demonstrated the potent hepatoprotective activity of α-MN evidenced by a remarkable decrease of serum indices of the hepatic injury and amendment of the histological lesions. α-MN significantly attenuated the level and immuno-expression of myeloperoxidase (MPO) indicating a decrease in the neutrophil infiltration into the liver. Additionally, the recruitment of the CD4+ T cell was suppressed in the α-MN pre-treated animals. α-MN showed a potent ability to repress the Con A-induced oxidative stress evident by the reduced levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and protein carbonyl (PC), as well as the enhanced levels of antioxidants as the reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC). The ELISA, RT-PCR, and IHC analyses revealed that α-MN enhanced the sirtuin1/nuclear factor erythroid 2 related factor-2 (SIRT1/Nrf2) signaling and its downstream cascade genes concurrently with the inhibition of the nuclear factor kappa B (NF-κB) and the inflammatory cytokines (tumor necrosis factor-alpha and interleukine-6) signaling. Taken together, these results inferred that the hepatoprotective activity of α-MN could prevent Con A-induced AIH through the modulation of the SIRT1/Nrf2/NF-κB signaling. Hence, α-MN may be considered as a promising candidate for AIH therapy.

20.
Toxicol Appl Pharmacol ; 253(2): 153-60, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21473879

RESUMO

The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10mg/kg) by oral gavage twice daily for 1week prior to exposure to aerosolized LPS. At 24h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO(2)(-)/NO(3)(-)) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-α (TNF-α), transforming growth factor-ß(1) (TGF-ß(1)) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO(2)(-)/NO(3)(-) levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-α, TGF-ß(1) and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells infiltration and hence ROS generation and regulate cytokine effects.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Lipopolissacarídeos/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Citocinas/biossíntese , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Nitratos/análise , Nitritos/análise , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA