Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 108, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500117

RESUMO

BACKGROUND: Camel milk and silymarin have many different beneficial effects on several animal species. Meanwhile, Aflatoxins are mycotoxins with extraordinary potency that pose major health risks to several animal species. Additionally, it has been documented that aflatoxins harm the reproductive systems of a variety of domestic animals. The present design aimed to investigate the impact of aflatoxin B1 (AFB1) on rat body weight and reproductive organs and the ameliorative effects of camel milk and silymarin through measured serum testosterone, testes pathology, and gene expression of tumor necrosis factor (TNF-α), luteinizing hormone receptor (LHR), and steroidogenic acute regulatory protein (StAR) in the testes. A total of sixty mature male Wister white rats, each weighing an average of 83.67 ± 0.21 g, were used. There were six groups created from the rats. Each division had ten rats. The groups were the control (without any treatment), CM (1 ml of camel milk/kg body weight orally), S (20 mg silymarin/kg b. wt. suspension, orally), A (1.4 mg aflatoxin/kg diet), ACM (aflatoxin plus camel milk), and AS (aflatoxin plus silymarin). RESULTS: The results indicated the positive effects of camel milk and silymarin on growth, reproductive organs, and gene expression of TNF-α, LHR, and StAR with normal testicular architecture. Also, the negative effect of AFB1 on the rat's body weight and reproductive organs, as indicated by low body weight and testosterone concentration, was confirmed by the results of histopathology and gene expression. However, these negative effects were ameliorated by the ingestion of camel milk and silymarin. CONCLUSION: In conclusion, camel milk and silymarin could mitigate the negative effect of AFB1 on rat body weight and reproductive organs.


Assuntos
Aflatoxinas , Silimarina , Masculino , Ratos , Animais , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Silimarina/farmacologia , Camelus , Leite , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Testículo/metabolismo , Testosterona/metabolismo , Peso Corporal
2.
BMC Vet Res ; 18(1): 178, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568841

RESUMO

BACKGROUND: The adverse effect of aflatoxin in broilers is well known. However, dietary supplementation of Saccharomyces cell wall and/or Nanocurcumin may decrease the negative effect of aflatoxin B1 because of the bio-adsorbing feature of the functional ingredients in Yeast Cell Wall and the detoxification effect of curcumin nanoparticles. The goal of this study was to see how Saccharomyces cell wall/Nanocurcumin alone or in combination with the aflatoxin-contaminated diet ameliorated the toxic effects of aflatoxin B1 on broiler development, blood and serum parameters, carcass traits, histology, immune histochemistry, liver gene expression, and aflatoxin residue in the liver and muscle tissue of broilers for 35 days. Moreover, the withdrawal time of aflatoxin was measured after feeding the aflatoxicated group an aflatoxin-free diet. Broiler chicks one day old were distributed into five groups according to Saccharomyces cell wall and/or nanocurcumin with aflatoxin supplementation. The G1 group was given a formulated diet without any supplements. The G2 group was supplemented with aflatoxin (0.25 mg/kg diet) in the formulated diet. The G3 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in the formulated diet. The G4 group was supplemented with aflatoxin (0.25 mg/kg diet) and nanocurcumin (400 mg/kg) in the formulated diet. The G5 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in combination with nanocurcumin (200 mg/kg) in the formulated diet. RESULTS: According to the results of this study, aflatoxin supplementation had a detrimental impact on the growth performance, blood and serum parameters, carcass traits, and aflatoxin residue in the liver and muscle tissue of broilers. In addition, aflatoxin supplementation led to a liver injury that was indicated by serum biochemistry and pathological lesions in the liver tissue. Moreover, the shortening of villi length in aflatoxicated birds resulted in a decrease in both the crypt depth ratio and the villi length ratio. The expression of CYP1A1 and Nrf2 genes in the liver tissue increased and decreased, respectively, in the aflatoxicated group. In addition, the aflatoxin residue was significantly (P ≤ 0.05) decreased in the liver tissue of the aflatoxicated group after 2 weeks from the end of the experiment. CONCLUSION: Saccharomyces cell wall alone or with nanocurcumin attenuated these negative effects and anomalies and improved all of the above-mentioned metrics.


Assuntos
Aflatoxinas , Doenças Transmitidas por Alimentos , Saccharomyces , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidade , Aflatoxinas/toxicidade , Ração Animal/análise , Animais , Parede Celular/metabolismo , Galinhas , Dieta/veterinária , Suplementos Nutricionais , Doenças Transmitidas por Alimentos/veterinária , Saccharomyces/metabolismo
3.
BMC Microbiol ; 21(1): 82, 2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33715621

RESUMO

BACKGROUND: Meat-products are considered an enriched media for mycotoxins. This study aimed to investigate the prevalence of toxigenic Aspergillus species in processed meat samples, HPLC-quantitative measurement of aflatoxin B1 and ochratoxin A residues, and molecular sequencing of aflR1 and pks genes. One hundred and twenty processed beef meat specimens (basterma, sausage, and minced meat; n = 40 for each) were collected from Ismailia Province, Egypt. Samples were prepared for total mold count, isolation, and identification of Aspergillus species. All samples were analyzed for the production of both Aflatoxin B1 and Ochratoxin A mycotoxins by HPLC. Molecular identification of Aspergillus flavus and Aspergillus ochraceus was performed using PCR amplification of the internal transcribed spacer (ITS) region; furthermore, the aflR1 and pks genes were sequenced. RESULTS: The total mold count obtained from sausage samples was the highest one, followed by minced meat samples. The prevalence of A. flavus was (15%), (7.5%), and (10%), while the prevalence of A. ochraceus was (2.5%), (10%), and (0%) in the examined basterma, sausage, and minced meat samples, respectively. Using PCR, the ITS region was successfully amplified in all the tested A. flavus and A. ochraceus strains. Aflatoxin B1 was detected in six basterma samples (15%). Moreover, the ochratoxin A was detected only in four sausage samples (10%). The aflR1 and pks genes were amplified and sequenced successfully and deposited in the GenBank with accession numbers MF694264 and MF694264, respectively. CONCLUSIONS: To the best of our knowledge, this is the first report concerning the HPLC-Molecular-based approaches for the detection of aflatoxin B1 and ochratoxin A in processed beef meat in Egypt. The production of aflatoxin B1 and ochratoxin A in processed meat constitutes a public health threat. Aflatoxin B1 is commonly associated with basterma samples. Moreover, ochratoxin A was detected frequently in sausage samples. The routine inspection of mycotoxins in processed meat products is essential to protect human consumers.


Assuntos
Aflatoxina B1/análise , Cromatografia Líquida de Alta Pressão , Análise de Alimentos/métodos , Produtos da Carne/análise , Ocratoxinas/análise , Animais , Aspergillus/química , Microbiologia de Alimentos , Produtos da Carne/microbiologia
4.
Sci Rep ; 13(1): 15092, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699912

RESUMO

Aflatoxin B1 (AFB1) poses a major risk to both human and animal health because it contaminates food, feed, and grains. These dangerous effects can be mitigated using natural components. The purpose of this study was to examine the ameliorative effects of camel milk and silymarin supplementation upon aflatoxin B1 induced hepatic injury in rats. This improvement was assessed by measuring leukocytic and deferential counts, serum biochemical parameters, and gene expression of Tumor Necrosis Factor (TNF-α), antioxidant gene (NAD(P)H quinone oxidoreductase 1 (NQO1)), and base excision repair genes (APE1 and OGG1) in the liver tissue, in addition to liver histopathology. Sixty mature males Wister white rats were used to perform the present study; the rats were distributed in six groups (ten rats/group). The control group (without any treatment) received saline by gavage. The camel milk group received 1 ml of camel milk/kg body weight. The silymarin group received 1 ml of silymarin suspension solution at a dose of 20 mg of silymarin/kg of b.wt. The aflatoxin group received an aflatoxin-contaminated diet at a dose of 1.4 mg of aflatoxin /kg of diet and received saline. The camel milk + aflatoxin group received the same previous oral doses of camel milk and an aflatoxin-contaminated diet at the same time. The silymarin + aflatoxin group received the same previous doses of silymarin orally and an aflatoxin-contaminated diet at the same time. The obtained data indicated the deleterious effect of aflatoxin B1 on the leukocytic count, activity of AST and ALT, serum proteins, ferritin, alpha-fetoprotein, carcinoembryonic antigen, liver pathology, and the expression of the studied genes. However, these deleterious effects were mitigated by camel milk and silymarin supplementation. Thus, we could conclude that the ingestion of camel milk and silymarin mitigated the negative effects of AFB1 on the hematology, activity of AST and ALT, serum proteins, ferritin, alpha-fetoprotein, carcinoembryonic antigen, liver pathology, and gene expression in the rat model.


Assuntos
Aflatoxinas , Silimarina , Humanos , Masculino , Animais , Ratos , Ratos Wistar , Aflatoxina B1/toxicidade , Silimarina/farmacologia , Camelus , Antígeno Carcinoembrionário , alfa-Fetoproteínas , Leite , Fígado , Fator de Necrose Tumoral alfa , Ferritinas
5.
Vector Borne Zoonotic Dis ; 19(3): 199-206, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30383975

RESUMO

As human populaces develop, they are progressively squeezed into higher living densities. The same is true for horticulture and animals expected to bolster these communities. Despite the high potential for zoonotic transmission, connections among humans and cattle have been understudied; however, Candida albicans remains the most important medical mycosis. The genesis of the mycobiome can vary, and interactions between humans and cattle are progressively being perceived as a key interface for disease transmission. αINT1 is a unique gene from Candida albicans; hence, it has been used for detection as well as intraspecific and interspecific phylogenetic analysis of C. albicans collected from human patients and cattle with pulmonary distress in urban-rural populations. A total of 1,921 specimens were examined by direct microscopy and culture to recover yeast associated with human infection. Identification was performed by micromorphology using an API 20C AUX system. The fungal species identified in bovine nasal specimens were Alternaria species (15%), Penicillium species, and C. albicans (6.7%). Other fungal species, such as Aspergillus niger, Torulopsis species, Mucor species (5%), Aspergillus flavus, Fusarium species, Trichosporon species (3.3%), C. rugosa, C. tropical, and Saccharomyces species (1.7%), were also isolated. In human sputum specimens, C. albicans (20%) and C. parapsilosis (2.7%) were the only reported yeast species in our samples. The four identified C. albicans species (two human and two cattle) were subjected to αINT1 gene sequence analysis, which confirmed major phylogenetic relationships among human and cattle isolates. This finding highlights the public health importance of bovines as a potential source for C. albicans zoonotic transmission to humans in an urban-rural community. Additionally, the close relationship between circulating C. albicans strains recorded in Egypt and the United States indicates the possible cross-species transmission of C. albicans between imported foreign and native cattle breeds.


Assuntos
Candida albicans/genética , Candidíase/veterinária , Doenças dos Bovinos/microbiologia , Variação Genética , Pneumopatias Fúngicas/veterinária , Animais , Candidíase/epidemiologia , Candidíase/microbiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Egito/epidemiologia , Humanos , Pulmão/microbiologia , Pneumopatias Fúngicas/epidemiologia , Pneumopatias Fúngicas/microbiologia , Zoonoses
6.
Pak J Biol Sci ; 19(1): 26-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26930797

RESUMO

Aflatoxins (AFs), widely distributed food-borne mycotoxins, affect quality and safety of food and cause economic losses in livestock. In this study, the protective effect of Bee Pollen (BP) against some immunotoxic hazards elucidated from eating of AFs-containing diet was investigated in Wistar rats. Rats were randomly classified intofour groups and treated for 30 days, Group 1; control negative, Group 2; Total AFs (3 mg kg(-1) basal diet), Group 3; BP (20 g kg(-1) basal diet) and Group 4; AFs+BP in basal diet. The immunoprotective effect of BP was revealed in terms of increasing (relative to levels seen in Group 2 rats that consumed the AFs diet) serum total protein and globulin levels, restored normal neutrophil (PMN)/lymphocyte ratio, increased PMN phagocytic activity and increased lymphocyte proliferative capacity. Also, the use of the BP reduced spleen H2O2 levels and increased GSH content while maintaining normal levels of NO formation. Histopathologic analysis showed thatthe AFs caused lymphocytic depletion in the spleen; however, BP induced lymphocytic hyperplasia and reduced the levels of AFs-inducible cellular exhaustion or depletion. These results provide evidence of a protective effect of BP against some immunotoxic actions induced in situ by consumption of AFs.


Assuntos
Aflatoxinas/toxicidade , Aspergillus flavus/metabolismo , Abelhas , Suplementos Nutricionais , Contaminação de Alimentos , Sistema Imunitário/efeitos dos fármacos , Pólen , Aflatoxinas/metabolismo , Ração Animal , Animais , Proteínas Sanguíneas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Matadoras Induzidas por Citocinas/efeitos dos fármacos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Ratos Wistar , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA