Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 247: 109220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596403

RESUMO

Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαß+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-ß and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-ß/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.


Assuntos
Linfócitos T CD8-Positivos , Subunidade alfa 3 de Fator de Ligação ao Core , Espondiloartropatias , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Inflamação , Mucosa Intestinal , Intestinos , Receptores de Antígenos de Linfócitos T alfa-beta , Espondiloartropatias/genética , Fator de Crescimento Transformador beta
2.
Exp Neurol ; 351: 113987, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065054

RESUMO

Traumatic brain injury (TBI) is a major cause of disability and death. Mild TBI (mTBI) constitutes ~75% of all TBI cases. Repeated exposure to mTBI (rmTBI), leads to the exacerbation of the symptoms compared to single mTBI. To date, there is no FDA-approved drug for TBI or rmTBI. This research aims to investigate possible rmTBI neurotherapy by targeting TBI pathology-related mechanisms. Oxidative stress is partly responsible for TBI/rmTBI neuropathologic outcomes. Thus, targeting oxidative stress may ameliorate TBI/rmTBI consequences. In this study, we hypothesized that mitoquinone (MitoQ), a mitochondria-targeted antioxidant, would ameliorate TBI/rmTBI associated pathologic features by mitigating rmTBI-induced oxidative stress. To model rmTBI, C57BL/6 mice were subjected to three concussive head injuries. MitoQ (5 mg/kg) was administered intraperitoneally to rmTBI+MitoQ mice twice per week over one month. Behavioral and cognitive outcomes were assessed, 30 days following the first head injury, using a battery of behavioral tests. Immunofluorescence was used to assess neuroinflammation and neuronal integrity. Also, qRT-PCR was used to evaluate the expression levels of antioxidant enzymes. Our findings indicated that MitoQ alleviated fine motor function and learning impairments caused by rmTBI. Mechanistically, MitoQ reduced astrocytosis, microgliosis, dendritic and axonal shearing, and increased the expression of antioxidant enzymes. MitoQ administration following rmTBI may represent an efficient approach to ameliorate rmTBI neurological and cellular outcomes with no observable side effects.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Concussão Encefálica/complicações , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organofosforados , Estresse Oxidativo , Ubiquinona/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA