Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 18(1): 354, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131280

RESUMO

BACKGROUND: This study evaluated the modulatory effects of zinc oxide nanoparticles (ZnO-NPs) supplementations on the productive performance, blood biochemistry, carcass criteria, and meat quality of White New Zealand rabbits reared under hot conditions. A total of 125 White New Zealand male rabbits (body weight, "650 ± 11", 30 days old) were assigned to five treatment diets: basal diets supplemented with ZnO-NPs at 0, 20, 40, 60, or 80 mg/kg for 60 days. Each treatment was replicated 25 times with one rabbit each. RESULTS: The body weight (BW), BW gain, and feed intake linearly increased with zinc oxide nanoparticle supplements. Supplementation of ZnO-NPs at 20, 40, 60, and 80 mg/kg significantly improved (linear, P < 0.05) the feed conversion ratio compared to the control group. Moreover, supplementation of ZnO-NPs at these inclusions 20, 40, 60, and 80 mg/kg significantly (P < 0.05) decreased the serum cholesterol, alanine aminotransferase, and aspartate aminotransferase, creatinine, and urea compared to control group. The lipid oxidation was lower, and the water holding capacity of rabbit meat was improved (P < 0.001) in rabbits fed on 20, 40, 60, and 80 mg/kg ZnO-NPs supplemented diets compared to control. CONCLUSION: The results suggested that dietary supplementation of ZnO-NPs (20-80 mg/kg) can mitigate the negative impacts of heat stress on rabbit performance and health. Its supplementation improved growth performance and meat physicochemical properties, and blood biochemistry parameters of White New Zealand rabbits.


Assuntos
Nanopartículas , Óxido de Zinco , Alanina Transaminase , Ração Animal/análise , Animais , Aspartato Aminotransferases , Peso Corporal , Colesterol , Creatinina , Dieta/veterinária , Suplementos Nutricionais , Lipídeos , Masculino , Carne/análise , Coelhos , Ureia , Água , Óxido de Zinco/farmacologia
2.
Animals (Basel) ; 13(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370443

RESUMO

This study aimed to evaluate the efficacy of dietary Acacia nilotica bark bioactive lipid compounds (ANBBLCs) as novel feed additives on the growth performance, carcass criteria, antioxidants, and antimicrobial activities of growing male rabbits. A total of 100 California male weanling rabbits aged 35 days were divided into four nutritional treatments, each of which contained ANBBLCs at concentrations of 0 (control group), 50, 100, and 150 mg/kg diet (n = 25 per treatment, each replication consisting of one animal). The average body weight of the animals was 613 ± 14 g. The experiments lasted for 56 days. Dietary ANBBLC levels linearly improved (p < 0.05) the body weight, body weight gain, and feed conversion ratio (FCR) of rabbits. Furthermore, with increasing concentrations of ANBBLCs, the total antioxidant capacity of blood and liver tissue was linearly (p < 0.05) enhanced. Lactobacillus increased and Staphylococcus decreased (p < 0.05) in comparison to the control group when ANBBLC levels were added to the diets of rabbits. Rabbit diets supplemented with ANBBLCs increased dressing percentages and decreased abdominal fat. This study shows that ANBBLCs can be used as a feed additive to enhance the growth performance, carcass criteria, antioxidant, and antibacterial properties of growing rabbits.

3.
Animals (Basel) ; 13(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894020

RESUMO

This study aims to examine the effects of supplementing male rabbit diets with nanoparticles of zinc oxide (Nano-ZnO) and Acacia nilotica fruit powder (ANFP) on production sustainability under hot climatic conditions. Eighty Californian male rabbits aged 40 days old (average body weight 738.5 ± 11 g) were divided into four treatment groups and administered one of the following diets: control diet, Nano-ZnO (50 mg/kg), ANFP (5 g/kg), or a combination of Nano-ZnO (50 mg/kg) and ANFP (5 g/kg) for a period of 60 days. Each of the 20 rabbits used in a treatment was regarded as a replicate. The results showed that adding Nano-ZnO and ANFP individually or in combination to rabbits' diets improved (p < 0.05) growth performance in comparison to control. In addition, zinc contents in serum or the testis tissues in the Nano-ZnO- and ANFP-treated rabbits were significantly greater (p < 0.05) than those in the control group. In addition, serum levels of creatinine, alanine aminotransferase, and aspartate aminotransferase were decreased (p < 0.05) by supplementation of Nano-ZnO, ANFP, or their combination. Carcass criteria did not differ among the treatments. Overall, the findings of the present study indicate that rabbits fed diets containing Nano-ZnO and ANFP, as well as their combination, showed improvements in growth performance, kidney and liver functions, as well as zinc retention in tissues under hot climatic conditions. The combination of Nano-ZnO and ANFP exhibited the best performance in the rabbits. More research on the synergistic effects of Nano-ZnO and ANFP in the sustainable production of rabbit meat is required.

4.
Environ Sci Pollut Res Int ; 29(55): 83797-83809, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35771327

RESUMO

Atrazine (ATZ) is a widely used herbicide; however, it has deleterious effects. The current study aimed to investigate the potential toxic effect of ATZ as a neuroendocrine disruptor on the cerebellum and thyroid gland and on the liver as a detoxifying organ. We examined the ability of ATZ to induce oxidative stress and subsequent apoptosis in these organs. Moreover, we investigated the potential protective effect of Acacia nilotica, because of its potent antioxidant activity. Thus, our study was carried out on 40 adult male albino rats that were divided equally into 4 groups (10 rats/each group). The first group received distilled water, while the second group received ATZ dissolved in corn oil at 200 mg/kg body weight/day by stomach gavage. The third group was treated orally by ATZ (200 mg/kg body weight/day) plus Acacia nilotica (400 mg/kg/day). Group IV received Acacia nilotica only at a dose (400 mg/kg/day). After successive 30 days of the experiment, blood and tissue samples were collected from all groups. Our findings revealed the ability of ATZ to induce toxic effects was observed microscopically in the form of degenerated neurons and vacuolated neuropil of the cerebellum, degenerated hepatocytes, and vacuolation of the follicular cells of the thyroid gland. Furthermore, ATZ significantly elevated AST, ALT, and ALP serum levels and TB concentration, while decreased GSH. DNA fragmentation% and activated caspase-3 expression significantly increased after ATZ exposure. Interestingly, Acacia nilotica administration was able to partially protect the examined organs against the toxic effect of ATZ exposure.


Assuntos
Acacia , Atrazina , Ratos , Animais , Acacia/química , Atrazina/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Peso Corporal
5.
Animals (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261201

RESUMO

The present study aimed to determine the effects of zinc oxide nanoparticles (ZnO-NPs), thyme oil (THO), or their combination on the nutrient digestibility coefficients, reproductive parameters, and some blood metabolites of male Californian rabbits. One hundred rabbits, 29-weeks of age (initial body weight 3.48 ± 0.08 kg) were randomly distributed into four groups, 25 rabbits each. Treatment groups were fed a control diet, a control diet supplemented with ZnO-NPs (100 mg/kg), THO (500 mg/kg), or combination of ZnO-NPs (100 mg/kg) and THO (500 mg/kg). The feeding trial lasted for 35 days. Results showed improvements in dry matter, crude protein, ether extract, and crude fiber in ZnO-NPs, THO, and their combination treated groups compared to those of control. Furthermore, semen volume, sperm motility, vitality, and morphology were significantly improved (p < 0.01) in ZnO-NPs and THO groups rather than the control. Both ZnO-NPs and THO, as either individual or combined treatments significantly improved the serum alanine amino-transferase (ALT), aspartate amino-transferase (AST), urea, and creatinine compared to the control. Moreover, serum concentrations of testosterone were significantly increased in rabbits supplemented with ZnO-NPs, THO, or their combination compared to those of control (p < 0.05). In conclusion, ZnO-NPs, THO, or their combination improved the digestibility of nutrients, liver/ kidney functions, semen characteristics, and testosterone concentration in male rabbits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA