Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 209(2): 576-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542980

RESUMO

Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 µm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division.


Assuntos
Bryopsida/citologia , Bryopsida/genética , Peroxissomos/genética , Proteínas de Plantas/genética , Bryopsida/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Família Multigênica , Mutação , Peroxinas , Peroxissomos/metabolismo , Peroxissomos/patologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 106(3): 941-6, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19141635

RESUMO

Two forms of a plant-specific RNA polymerase (Pol), PolIV(PolIVa) and PolV(PolIVb), currently defined by their respective largest subunits [NRPD1(NRPD1a) and NRPE1(NRPD1b)], have been implicated in the production and activity of 24-nt small RNAs (sRNAs) in RNA-directed DNA methylation (RdDM). Prevailing models support the view that PolIV(PolIVa) plays an upstream role in RdDM by producing the 24-nt sRNAs, whereas PolV(PolIVb) would act downstream at a structural rather than an enzymatic level to reinforce sRNA production by PolIV(PolIVa) and mediate DNA methylation. However, the composition and mechanism of action of PolIV(PolIVa)/PolV(PolIVb) remain unclear. In this work, we have identified a plant-specific PolV(PolIVb) subunit, NRPE5a, homologous to NRPB5a, a common subunit shared by PolI-III and shown here to be present in PolIV(PolIVa). Our results confirm the combinatorial diversity of PolIV(PolIVa)/PolV(PolIVb) subunit composition and indicate that these plant-specific Pols are eukaryotic-type polymerases. Moreover, we show that nrpe5a-1 mutation differentially impacts sRNAs accumulation at various PolIV(PolIVa)/PolV(PolIVb)-dependent loci, indicating a target-specific requirement for NRPE5a in the process of PolV(PolIVb)-dependent gene silencing. We then describe that the triad aspartate motif present in the catalytic center of PolV(PolIVb) is required for recapitulation of all activities associated with this Pol complex in RdDM, suggesting that RNA polymerization is important for PolV(PolIVb) to perform its regulatory functions.


Assuntos
Arabidopsis/enzimologia , Metilação de DNA , RNA Polimerases Dirigidas por DNA/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , Inativação Gênica , Dados de Sequência Molecular , Subunidades Proteicas
3.
Biochem J ; 387(Pt 3): 669-76, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15601251

RESUMO

Plastid division in higher plants is morphologically similar to bacterial cell division, with a process termed binary fission involving constriction of the envelope membranes. FtsZ proteins involved in bacterial division are also present in higher plants, in which the ftsZ genes belong to two distinct families: ftsZ1 and ftsZ2. However, the roles of the corresponding proteins FtsZ1 and FtsZ2 in plastid division have not been determined. Here we show that the expression of plant FtsZ1 and FtsZ2 in bacteria has different effects on cell division, and that distinct protein domains are involved in the process. We have studied the assembly of purified FtsZ1 and FtsZ2 using a chemical cross-linking approach followed by PAGE and electron microscopy analyses of the resulting polymers. This has revealed that FtsZ1 is capable of forming long rod-shaped polymers and rings similar to the bacterial FtsZ structures, whereas FtsZ2 does not form any organized polymer. Moreover, using purified sub-plastidial fractions, we show that both proteins are present in the stroma, and that a subset of FtsZ2 is tightly bound to the purified envelope membranes. These results indicate that FtsZ2 has a localization pattern distinct from that of FtsZ1, which can be related to distinct properties of the proteins. From the results presented here, we propose a model for the sequential topological localization and functions of green plant FtsZ1 and FtsZ2 in chloroplast division.


Assuntos
Divisão Celular/fisiologia , Cloroplastos/fisiologia , Escherichia coli/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis , Membrana Celular/fisiologia , Escherichia coli/genética , Expressão Gênica , Organismos Geneticamente Modificados , Ligação Proteica , Nicotiana/genética
4.
PLoS One ; 5(2): e9408, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20195524

RESUMO

The PEX11 family of peroxisome membrane proteins have been shown to be involved in regulation of peroxisome size and number in plant, animals, and yeast cells. We and others have previously suggested that peroxisome proliferation as a result of abiotic stress may be important in plant stress responses, and recently it was reported that several rice PEX11 genes were up regulated in response to abiotic stress. We sought to test the hypothesis that promoting peroxisome proliferation in Arabidopsis thaliana by over expression of one PEX11 family member, PEX11e, would give increased resistance to salt stress. We could demonstrate up regulation of PEX11e by salt stress and increased peroxisome number by both PEX11e over expression and salt stress, however our experiments failed to find a correlation between PEX11e over expression and increased peroxisome metabolic activity or resistance to salt stress. This suggests that although peroxisome proliferation may be a consequence of salt stress, it does not affect the ability of Arabidopsis plants to tolerate saline conditions.


Assuntos
Arabidopsis/fisiologia , Peroxissomos/efeitos dos fármacos , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Microscopia de Fluorescência , Peroxinas , Peroxissomos/metabolismo , Peroxissomos/fisiologia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Nicotiana/citologia , Regulação para Cima/efeitos dos fármacos
5.
Genes Dev ; 21(20): 2539-44, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17938239

RESUMO

Two forms of RNA Polymerase IV (PolIVa/PolIVb) have been implicated in RNA-directed DNA methylation (RdDM) in Arabidopsis. Prevailing models imply a distinct function for PolIVb by association of Argonaute4 (AGO4) with the C-terminal domain (CTD) of its largest subunit NRPD1b. Here we show that the extended CTD of NRPD1b-type proteins exhibits conserved Argonaute-binding capacity through a WG/GW-rich region that functionally distinguishes Pol IVb from Pol IVa, and that is essential for RdDM. Site-specific mutagenesis and domain-swapping experiments between AtNRPD1b and the human protein GW182 demonstrated that reiterated WG/GW motifs form evolutionarily and functionally conserved Argonaute-binding platforms in RNA interference (RNAi)-related components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas Argonautas , Sequência Conservada , Metilação de DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Interferência de RNA , Sequências Repetitivas de Aminoácidos , Homologia de Sequência de Aminoácidos
6.
Cell ; 126(1): 93-106, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16839879

RESUMO

ARGONAUTE4 (AGO4) and RNA polymerase IV (Pol IV) are required for DNA methylation guided by 24 nucleotide small interfering RNAs (siRNAs) in Arabidopsis thaliana. Here we show that AGO4 localizes to nucleolus-associated bodies along with the Pol IV subunit NRPD1b; the small nuclear RNA (snRNA) binding protein SmD3; and two markers of Cajal bodies, trimethylguanosine-capped snRNAs and the U2 snRNA binding protein U2B''. AGO4 interacts with the C-terminal domain of NRPD1b, and AGO4 protein stability depends on upstream factors that synthesize siRNAs. AGO4 is also found, along with the DNA methyltransferase DRM2, throughout the nucleus at presumed DNA methylation target sites. Cajal bodies are conserved sites for the maturation of ribonucleoprotein complexes. Our results suggest a function for Cajal bodies as a center for the assembly of an AGO4/NRPD1b/siRNA complex, facilitating its function in RNA-directed gene silencing at target loci.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Nucléolo Celular/genética , Corpos Enovelados/genética , Inativação Gênica/fisiologia , RNA Interferente Pequeno/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Autoantígenos/genética , Autoantígenos/metabolismo , Sítios de Ligação/genética , Nucléolo Celular/metabolismo , Corpos Enovelados/metabolismo , Metilação de DNA , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Substâncias Macromoleculares/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas Centrais de snRNP
7.
Mol Membr Biol ; 23(4): 325-36, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16923726

RESUMO

Peroxisomes are organelles found in all eukaryotic cells. Peroxisomes import integral membrane proteins post-translationally, and PEX19 is a predominantly cytosolic, farnesylated protein of mammalian and yeast cells that binds multiple peroxisome membrane proteins and is required for their correct targeting/insertion to the peroxisome membrane. We report the characterisation of the Arabidopsisthaliana homologue of PEX19 which is a predominantly cytosolic protein. AtPEX19 is encoded by two genes (designated AtPEX19-1 and AtPEX19-2) that are expressed in all tissues and at all developmental stages of the plant. Quantitative real time PCR shows that AtPEX19-1 and AtPEX19-2 have distinct expression profiles. Using in vitro translation and co-immunoprecipitation AtPEX19-1 was shown to bind to the Arabidopsis peroxisomal membrane protein PEX10. Additionally, bacterially expressed recombinant AtPEX19-1 was able to bind a fusion protein consisting of the C-terminus of PEX10 and glutathione S-transferase in pull-down assays, thereby demonstrating that non-farnesylated AtPEX19 can interact with the C-terminus of AtPEX10. Purified recombinant AtPEX19-1 was analysed by gel filtration chromatography and was found to have a molecular weight consistent with it forming a dimer and a dimer was detected in Arabidopsis cell extracts that was slightly destabilised in the presence of DTT. Moreover, cross-linking studies of native AtPEX19 suggest that in vivo it is the dimeric species of the protein that preferentially forms complexes with other proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Dimerização , Genes de Plantas , Proteínas de Membrana/genética , Peroxinas , Peroxissomos/metabolismo
8.
Plant Physiol ; 133(4): 1809-19, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14576288

RESUMO

Peroxisomes participate in many important functions in plants, including seed reserve mobilization, photorespiration, defense against oxidative stress, and auxin and jasmonate signaling. In mammals, defects in peroxisome biogenesis result in multiple system abnormalities, severe developmental delay, and death, whereas in unicellular yeasts, peroxisomes are dispensable unless required for growth of specific substrates. PEX10 encodes an integral membrane protein required for peroxisome biogenesis in mammals and yeast. To investigate the importance of PEX10 in plants, we characterized a Ds insertion mutant in the PEX10 gene of Arabidopsis (AtPEX10). Heterozygous AtPEX10::dissociation element mutants show normal vegetative phenotypes under optimal growth conditions, but produce about 20% abnormal seeds. The embryos in the abnormal seeds are predominantly homozygous for the disruption allele. They show retarded development and some morphological abnormalities. No viable homozygous mutant plants were obtained. AtPEX10 fused to yellow fluorescent protein colocalized with green fluorescent protein-serine-lysine-leucine, a well-documented peroxisomal marker, suggesting that AtPEX10 encodes a peroxisomal protein that is essential for normal embryo development and viability.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Deleção de Genes , Genes de Plantas/genética , Proteínas de Membrana Transportadoras , Peroxissomos/fisiologia , Sementes/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Códon de Terminação , Genes Letais , Triagem de Portadores Genéticos , Homozigoto , Microscopia Confocal , Dados de Sequência Molecular , Peroxinas , Peroxissomos/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA