Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant J ; 111(6): 1609-1625, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861682

RESUMO

Somatic mutations may alter important traits in tree fruits, such as fruit color, size and maturation date. Autumn Gala (AGala), a somatic mutation from apple cultivar Gala, matures 4 weeks later than Gala. To understand the mechanisms underlying the delayed maturation, RNA-seq analyses were conducted with fruit sampled at 13 (Gala) and 16 (AGala) time-points during their growth and development. Weighted gene co-expression network analysis (WGCNA) of 23 372 differentially expressed genes resulted in 25 WGCNA modules. Of these, modules 1 (r = -0.98, P = 2E-21) and 2 (r = -0.52, P = 0.004), which were suppressed in AGala, were correlated with fruit maturation date. Surprisingly, 77 of the 152 member genes in module 1 were harbored in a 2.8-Mb genomic region on chromosome 6 that was deleted and replaced by a 10.7-kb gypsy-like retrotransposon (Gy-36) from chromosome 7 in AGala. Among the 77 member genes, MdACT7 was the most suppressed (by 10.5-fold) in AGala due to a disruptive 2.5-kb insertion in coding sequence. Moreover, MdACT7 is the exclusive apple counterpart of Arabidopsis ACT7 known of essential roles in plant development, and the functional allele MdACT7, which was lost to the deletion in AGala, was associated with early fruit maturation in 268 apple accessions. Overexpressing alleles MdACT7 and Mdact7 in an Arabidopsis act7 line showed that MdACT7 largely rescued its stunted growth and delayed initial flowering while Mdact7 did not. Therefore, the 2.8-Mb hemizygous deletion is largely genetically causal for fruit maturation delay in AGala, and the total loss of MdACT7 might have contributed to the phenotype.


Assuntos
Arabidopsis , Malus , Arabidopsis/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Malus/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982733

RESUMO

Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.


Assuntos
Edição de Genes , Vitis , Vitis/genética , Melhoramento Vegetal , Sementes/genética , Frutas/genética , Sistemas CRISPR-Cas/genética
3.
Plant Physiol ; 182(2): 992-1006, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31772076

RESUMO

Malate accumulation in the vacuole largely determines apple (Malus domestica) fruit acidity, and low fruit acidity is strongly associated with truncation of Ma1, an ortholog of ALUMINUM-ACTIVATED MALATE TRANSPORTER9 (ALMT9) in Arabidopsis (Arabidopsis thaliana). A mutation at base 1,455 in the open reading frame of Ma1 leads to a premature stop codon that truncates the protein by 84 amino acids at its C-terminal end. Here, we report that both the full-length protein, Ma1, and its naturally occurring truncated protein, ma1, localize to the tonoplast; when expressed in Xenopus laevis oocytes and Nicotiana benthamiana cells, Ma1 mediates a malate-dependent inward-rectifying current, whereas the ma1-mediated transmembrane current is much weaker, indicating that ma1 has significantly lower malate transport activity than Ma1. RNA interference suppression of Ma1 expression in 'McIntosh' apple leaves, 'Empire' apple fruit, and 'Orin' apple calli results in a significant decrease in malate level. Genotyping and phenotyping of 186 apple accessions from a diverse genetic background of 17 Malus species combined with the functional analyses described above indicate that Ma1 plays a key role in determining fruit acidity and that the truncation of Ma1 to ma1 is genetically responsible for low fruit acidity in apple. Furthermore, we identified a C-terminal domain conserved in all tonoplast-localized ALMTs essential for Ma1 function; protein truncations into this conserved domain significantly lower Ma1 transport activity. We conclude that the truncation of Ma1 to ma1 reduces its malate transport function by removing a conserved C-terminal domain, leading to low fruit acidity in apple.


Assuntos
Frutas/genética , Frutas/metabolismo , Malatos/metabolismo , Malus/genética , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Malus/metabolismo , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Domínios Proteicos , Interferência de RNA , Nicotiana/metabolismo , Nicotiana/fisiologia , Vacúolos/genética , Vacúolos/fisiologia , Xenopus laevis
4.
J Exp Bot ; 72(2): 371-384, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945838

RESUMO

Fruit development is orchestrated by a complex network of interactions between hormone signaling pathways. The phytohormone gibberellin (GA) is known to regulate a diverse range of developmental processes; however, the mechanisms of GA action in perennial fruit species are yet to be elucidated. In the current study, a GA signaling gene PslSLY1, encoding a putative F-box protein that belongs to the SLY1 (SLEEPY1)/GID2 (gibberellin-insensitive dwarf2) gene family, was isolated from Japanese plum (Prunus salicina). PslSLY1 transcript abundance declined as fruit development progressed, along with potential negative feedback regulation of PslSLY1 by GA. Subcellular localization and protein-protein interaction assays suggested that PslSLY1 functions as an active GA signaling component that interacts with the ASK1 (Arabidopsis SKP1) subunit of an SCF-ubiquitin ligase complex and with PslDELLA repressors, in a GA-independent manner. By using a domain omission strategy, we illustrated that the F-box and C-terminal domains of PslSLY1 are essential for its interactions with the downstream GA signaling components. PslSLY1 overexpression in wild-type and Arabidopsissly1.10 mutant backgrounds resulted in a dramatic enhancement in overall plant growth, presumably due to triggered GA signaling. This includes germination characteristics, stem elongation, flower structure, and fertility. Overall, our findings shed new light on the GA strategy and signaling network in commercially important perennial crops.


Assuntos
Proteínas de Arabidopsis , Proteínas F-Box , Prunus domestica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas , Mutação , Prunus domestica/metabolismo
5.
Plant Dis ; 105(10): 3244-3249, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33434033

RESUMO

Plums are affected by a cancerous disease called "black knot disease" caused by the fungus Apiosporina morbosa. It affects both Japanese (Prunus salicina) and European (Prunus domestica) plums equally. To understand the spread of the disease, histological analysis was performed in two different European plum cultivars (susceptible and tolerant). Light and scanning electron microscope (SEM) analyses confirmed the presence of the growing hyphae in the internal tissues of the susceptible trees. By using stereoscopic analysis with a fluorescence filter, we were able to detect the hyphae in the visible lesion area. At about 2 inches from above and below the knots, no spore or hypha were visible with the light microscope. However, SEM images showed strong evidence that the fungus is capable of migrating to adjacent vessels in the susceptible plum genotype. In fact, at that distance below and above the knots, conidia were detected inside xylem vessels suggesting a systemic movement of the fungus that has not been shown so far. No symptoms were observed in the resistant genotype. Starch granules, vessel occlusions, and lipid droplets were the main distinguishable characteristics between susceptible and tolerant varieties.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas/microbiologia , Prunus domestica , Ascomicetos/patogenicidade , Frutas , Microscopia Eletrônica de Varredura , Prunus domestica/microbiologia , Prunus domestica/ultraestrutura , Árvores
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638784

RESUMO

While horizontally transferred transposable elements (TEs) have been reported in several groups of plants, their importance for genome evolution remains poorly understood. To understand how horizontally transferred TEs contribute to plant genome evolution, we investigated the composition and activity of horizontally transferred TEs in the genomes of four Vitis species. A total of 35 horizontal transfer (HT) events were identified between the four Vitis species and 21 other plant species belonging to 14 different families. We determined the donor and recipient species for 28 of these HTs, with the Vitis species being recipients of 15 of them. As a result of HTs, 8-10 LTR retrotransposon clusters were newly formed in the genomes of the four Vitis species. The activities of the horizontally acquired LTR retrotransposons differed among Vitis species, showing that the consequences of HTs vary during the diversification of the recipient lineage. Our study provides the first evidence that the HT of TEs contributes to the diversification of plant genomes by generating additional TE subfamilies and causing their differential proliferation in host genomes.


Assuntos
Transferência Genética Horizontal , Variação Genética , Genoma de Planta , Retroelementos , Vitis/genética
7.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486204

RESUMO

Plant stress is a real dilemma; it puzzles plant biologists and is a global problem that negatively affects people's daily lives. Of particular interest is salinity, because it represents one of the major water-related stress types. We aimed to determine the signals that guide the cellular-related events where various adaptation mechanisms cross-talk to cope with salinity-related water stress in plants. In an attempt to unravel these mechanisms and introduce cellular events in the right context, we expansively discussed how salt-related signals are sensed, with particular emphasis on aquaporins, nonselective cation channels (NSCCs), and glycosyl inositol phosphorylceramide (GIPC). We also elaborated on the critical role Ca2+, H+, and ROS in mediating signal transduction pathways associated with the response and tolerance to salt stress. In addition, the fragmentary results from the literature were compiled to develop a harmonized, informational, and contemplative model that is intended to improve our perception of these adaptative mechanisms and set a common platform for plant biologists to identify intriguing research questions in this area.


Assuntos
Plantas/metabolismo , Estresse Salino , Tolerância ao Sal , Adaptação Fisiológica , Aquaporinas/metabolismo , Cálcio/metabolismo , Glicoesfingolipídeos/metabolismo , Glicosilação , Íons , Prótons , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Transdução de Sinais , Sódio/metabolismo , Estresse Mecânico
8.
BMC Biol ; 13: 11, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25857534

RESUMO

BACKGROUND: Variations in floral display represent one of the core features associated with the transition from allogamy to autogamy in angiosperms. The promotion of autogamy under stress conditions suggests the potential involvement of a signaling pathway with a dual role in both flower development and stress response. The jasmonic acid (JA) pathway is a plausible candidate to play such a role because of its involvement in many plant responses to environmental and developmental cues. In the present study, we used peach (Prunus persica L.) varieties with showy and non-showy flowers to investigate the role of JA (and JA signaling suppressors) in floral display. RESULTS: Our results show that PpJAZ1, a component of the JA signaling pathway in peach, regulates petal expansion during anthesis and promotes self-pollination. PpJAZ1 transcript levels were higher in petals of the non-showy flowers than those of showy flowers at anthesis. Moreover, the ectopic expression of PpJAZ1 in tobacco (Nicotiana tabacum L.) converted the showy, chasmogamous tobacco flowers into non-showy, cleistogamous flowers. Stability of PpJAZ1 was confirmed in vivo using PpJAZ1-GFP chimeric protein. PpJAZ1 inhibited JA-dependent processes in roots and leaves of transgenic plants, including induction of JA-response genes to mechanical wounding. However, the inhibitory effect of PpJAZ1 on JA-dependent fertility functions was weaker, indicating that PpJAZ1 regulates the spatial localization of JA signaling in different plant organs. Indeed, JA-related genes showed differential expression patterns in leaves and flowers of transgenic plants. CONCLUSIONS: Our results reveal that under stress conditions ­ for example, herbivore attacks ­ stable JAZ proteins such as PpJAZ1 may alter JA signaling in different plant organs, resulting in autogamy as a reproductive assurance mechanism. This represents an additional mechanism by which plant hormone signaling can modulate a vital developmental process in response to stress.


Assuntos
Cruzamentos Genéticos , Proteínas de Plantas/metabolismo , Polinização/fisiologia , Prunus/fisiologia , Autofertilização/fisiologia , Ciclopentanos/farmacologia , Flores/efeitos dos fármacos , Flores/fisiologia , Frutas/efeitos dos fármacos , Frutas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oxilipinas/farmacologia , Pigmentação/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polinização/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Prunus/efeitos dos fármacos , Prunus/genética , Autofertilização/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Transcrição Gênica/efeitos dos fármacos , Transgenes
9.
J Exp Bot ; 66(22): 7359-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26417021

RESUMO

Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation.


Assuntos
Antocianinas/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Malus/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Impressões Digitais de DNA , Frutas , Perfilação da Expressão Gênica , Genes de Plantas , Marcadores Genéticos , Regiões Promotoras Genéticas
10.
Plant Mol Biol ; 84(4-5): 399-413, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24142379

RESUMO

Fruit growth is a coordinated, complex interaction of cell division, differentiation and expansion. Gibberellin (GA) involvement in the reproductive events is an important aspect of GA effects. Perennial fruit-trees such as plum (Prunus salicina L.) have distinct features that are economically important and provide opportunities to dissect specific GA mechanisms. Currently, very little is known on the molecular mechanism(s) mediating GA effects on fruit development. Determination of bioactive GA content during plum fruit ontogeny revealed that GA1 and GA4 are critical for fruit growth and development. Further, characterization of several genes involved in GA-signalling showed that their transcriptional regulation are generally GA-dependent, confirming their involvement in GA-signalling. Based on these results, a model is presented elucidating how the potential association between GA and other hormones may contribute to fruit development. PslGID1 proteins structure, Y2H and BiFC assays indicated that plum GA-receptors can form a complex with AtDELLA-repressors in a GA-dependent manner. Moreover, phenotypical-, molecular- and GA-analyses of various Arabidopsis backgrounds ectopically expressing PslGID1 sequences provide evidence on their role as active GA-signalling components that mediate GA-responsiveness. Our findings support the critical contribution of GA alone or in association with other hormones in mediating plum fruit growth and development.


Assuntos
Frutas/metabolismo , Giberelinas/metabolismo , Prunus/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Giberelinas/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Prunus/genética , Prunus/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
11.
J Exp Bot ; 65(18): 5205-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24996652

RESUMO

Ethylene has long been considered the key regulator of ripening in climacteric fruit. Recent evidence showed that auxin also plays an important role during fruit ripening, but the nature of the interaction between the two hormones has remained unclear. To understand the differences in ethylene- and auxin-related behaviours that might reveal how the two hormones interact, we compared two plum (Prunus salicina L.) cultivars with widely varying fruit development and ripening ontogeny. The early-ripening cultivar, Early Golden (EG), exhibited high endogenous auxin levels and auxin hypersensitivity during fruit development, while the late-ripening cultivar, V98041 (V9), displayed reduced auxin content and sensitivity. We show that exogenous auxin is capable of dramatically accelerating fruit development and ripening in plum, indicating that this hormone is actively involved in the ripening process. Further, we demonstrate that the variations in auxin sensitivity between plum cultivars could be partially due to PslAFB5, which encodes a TIR1-like auxin receptor. Two different PslAFB5 alleles were identified, one (Pslafb5) inactive due to substitution of the conserved F-box amino acid residue Pro61 to Ser. The early-ripening cultivar, EG, exhibited homozygosity for the inactive allele; however, the late cultivar, V9, displayed a PslAFB5/afb5 heterozygous genotype. Our results highlight the impact of auxin in stimulating fruit development, especially the ripening process and the potential for differential auxin sensitivity to alter important fruit developmental processes.


Assuntos
Frutas/metabolismo , Prunus/metabolismo , Etilenos/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Prunus/genética
12.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891319

RESUMO

This study was conducted for the comparative analysis of antioxidant activity and untargeted metabolomics of dark- and light-colored sour cherry cultivars grown in Canada. Based on our previous study, we selected four cultivars-'Heimann R', 'Gorsemska', V70142, and 'Montmorency'-to determine the untargeted metabolites and their role in antioxidant activities. A total of 473 metabolites were identified from four sour cherry genotypes using UPLC-ToF-MS. Untargeted metabolomics revealed the dominant chemical groups present in sour cherries. PCA showed that the diversity in sour cherry metabolites was due to the genotype differences indicating iditol, malic acid, chlorobenzene, 2-mercaptobenzothiazole, and pyroglutamic acid as the predominant contributors. The variable importance in the projection (VIP > 1.0) in partial least-squares-discriminant analysis described 20 biomarker metabolites representing the cherry metabolome profiles. A heatmap of Pearson's correlation analysis between the 20 biomarker metabolites and antioxidant activities identified seven antioxidant determinants that displayed the highest correlations with different types of antioxidant activities. TPC and TAC were evaluated using the Folin-Ciocalteu method. The total antioxidant activity was performed using three different assays (ABTS, FRAP, and DPPH). This study of correlating metabolomics and antioxidant activities elucidated that the higher nutritional value and biological functions of sour cherry genotypes can be useful for the development of nutraceutical and functional foods.

13.
Plants (Basel) ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38592889

RESUMO

Salinity is one of the substantial threats to plant productivity and could be escorted by other stresses such as heat and drought. It impairs critical biological processes, such as photosynthesis, energy, and water/nutrient acquisition, ultimately leading to cell death when stress intensity becomes uncured. Therefore, plants deploy several proper processes to overcome such hostile circumstances. Grapevine is one of the most important crops worldwide that is relatively salt-tolerant and preferentially cultivated in hot and semi-arid areas. One of the most applicable strategies for sustainable viticulture is using salt-tolerant rootstock such as Ruggeri (RUG). The rootstock showed efficient capacity of photosynthesis, ROS detoxification, and carbohydrate accumulation under salinity. The current study utilized the transcriptome profiling approach to identify the molecular events of RUG throughout a regime of salt stress followed by a recovery procedure. The data showed progressive changes in the transcriptome profiling throughout salinity, underpinning the involvement of a large number of genes in transcriptional reprogramming during stress. Our results established a considerable enrichment of the biological process GO-terms related to salinity adaptation, such as signaling, hormones, photosynthesis, carbohydrates, and ROS homeostasis. Among the battery of molecular/cellular responses launched upon salinity, ROS homeostasis plays the central role of salt adaptation.

14.
Foods ; 12(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685084

RESUMO

Muscadine grape pomace and mixed products with chocolate extracts from three muscadine genotypes exhibiting different berry skin colors (black and bronze) were investigated for total phenolic content (TPC), total flavonoid content (TFC), DPPH, FRAP antioxidant activity, and anticancer activity using MDA-MB-468 (MM-468; African American) breast cancer cells. Muscadine berry extracts and mixed products showed cytotoxicity activities of up to 70% against MM-468 breast cancer cells. Cell growth inhibition was higher in 'macerated Floriana' with an IC50 value of 20.70 ± 2.43 followed by 'Alachua' with an IC50 value of 22.25 ± 2.47. TPC and TFC in macerated MGP powder were (1.4 ± 0.14 and 0.45 ± 0.01 GAE/g FW, respectively), which was significantly higher than those in cocoa powder. Data analysis showed a high association between DPPH, FRAP antioxidant activities, and TPC content and a positive high correlation between anticancer activity and antioxidant capacity and between TPC and anticancer activity. The anticancer and antioxidant effects of muscadine grape pomace and chocolate extracts are attributed to the TPC of extracts, which showed a stronger positive correlation with growth inhibition of African American breast cancer cells. This study would be of great value for food industries as well as other manufacturers who are interested in new food blends.

15.
Metabolites ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36837828

RESUMO

Different southern grape (Muscadine) genotypes (Muscadinia rotundifolia Michx.) were evaluated for their contents of metabolites in ripe berries. The metabolome study identified 331 metabolites in ripening skin and seed tissues. The major chemical groups were organic acids, fatty acyls, polyketides, and organic heterocycle compounds. The metabolic pathways of the identified metabolite were mainly arginine biosynthesis, D-glutamine, D-glutamate metabolism, alanine, aspartate metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle. Principal component analysis indicated that catechin, gallic acid, and epicatechin-3-gallate were the main metabolites existing in muscadine seed extracts. However, citramalic and malic acids were the main metabolites contributing to muscadine skin extracts. Partial least-squares discriminant analysis (VIP > 1) described 25 key compounds indicating the metabolome in muscadine tissues (skin and seed). Correlation analysis among the 25 compounds and oxidation inhibition activities identified five biomarker compounds that were associated with antioxidant activity. Catechin, gallic acid, epicatechin-3-gallate, fertaric acid, and procyanidin B1 were highly associated with DPPH, FRAP, CUPRAC, and ABTS. The five biomarker compounds were significantly accumulated in the seed relative to the skin tissues. An evaluation of 15 antioxidant-related genes represented by the 3-dehydroquinate dehydratase (DHD), shikimate kinase (SK), chalcone synthase (CHS), anthocyanidin reductase (ANR), laccase (LAC), phenylalanine ammonia-lyase (PAL), dihydroflavonol 4-reductase (DFR), 3-dehydroquinate synthase (DHQS), chorismate mutase (CM), flavanone-3-hydroxylase (F3H), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), leucoanthocyanidin reductase (LAR), gallate 1-ß-glucosyltransferase (UGT), and anthocyanidin 3-O-glucosyltransferase (UFGT) encode critical enzymes related to polyphenolics pathway throughout four developmental stages (fruit-set FS, véraison V, ripe-skin R, and ripe-seed; S) in the C5 genotype demonstrated the dramatic accumulation of all transcripts in seed tissue or a developmental stage-dependent manner. Our findings suggested that muscadine grape seeds contain essential metabolites that could attract the attention of those interested in the pharmaceutical sector and the plant breeders to develop new varieties with high nutraceutical value.

16.
Front Plant Sci ; 14: 1271251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965000

RESUMO

Scarlet Royal, a mid-season ripening table grape, is one of the popular red grape varieties in California. However, its berries develop an undesirable astringent taste under certain conditions. Among the various factors contributing to the degradation of berry attributes, the levels and compositions of polyphenols play a fundamental role in defining berry quality and sensory characteristics. To comprehend the underlying mechanism of astringency development, Scarlet Royal berries with non-astringent attributes at the V7 vineyard were compared to astringent ones at the V9 vineyard. Biochemical analysis revealed that the divergence in berry astringency stemmed from alterations in its polyphenol composition, particularly tannins, during the late ripening stage at the V9 vineyard. Furthermore, transcriptomic profiling of berries positively associated nineteen flavonoid/proanthocyanidins (PAs) structural genes with the accumulation of PAs in V9 berries. The identification of these genes holds significance for table grape genetic improvement programs. At a practical level, the correlation between the taste panel and tannin content revealed a threshold level of tannins causing an astringent taste at approximately 400 mg/L. Additionally, berry astringency at the V9 vineyard was linked to a lower number of clusters and yield during the two study seasons, 2016 and 2017. Furthermore, petiole nutrient analysis at bloom showed differences in nutrient levels between the two vineyards, including higher levels of nitrogen and potassium in V9 vines compared to V7. It's worth noting that V9 berries at harvest displayed a lower level of total soluble solids and higher titratable acidity compared to V7 berries. In conclusion, our results indicate that the accumulation of tannins in berries during the ripening process results in a reduction in their red color intensity but significantly increases the astringency taste, thereby degrading the berry quality attributes. This study also highlights the association of high nitrogen nutrient levels and a lower crop load with berry astringency in table grapes, paving the way for further research in this area.

17.
Plants (Basel) ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765411

RESUMO

Like other plant stresses, salinity is a central agricultural problem, mainly in arid or semi-arid regions. Therefore, salt-adapted plants have evolved several adaptation strategies to counteract salt-related events, such as photosynthesis inhibition, metabolic toxicity, and reactive oxygen species (ROS) formation. European grapes are usually grafted onto salt-tolerant rootstocks as a cultivation practice to alleviate salinity-dependent damage. In the current study, two grape rootstocks, 140 Ruggeri (RUG) and Millardet et de Grasset 420A (MGT), were utilized to evaluate the diversity of their salinity adaptation strategies. The results showed that RUG is able to maintain higher levels of the photosynthetic pigments (Chl-T, Chl-a, and Chl-b) under salt stress, and hence accumulates higher levels of total soluble sugars (TSS), monosaccharides, and disaccharides compared with the MGT rootstock. Moreover, it was revealed that the RUG rootstock maintains and/or increases the enzymatic activities of catalase, GPX, and SOD under salinity, giving it a more efficient ROS detoxification machinery under stress.

18.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35040982

RESUMO

Vitis has two subgenera: Euvitis, which includes commercially important Vitis vinifera and interspecific hybrid cultivars, and Muscadinia. Of note, the market for Muscadinia grapes remains small, and only Muscadinia rotundifolia is cultivated as a commercial crop. To establish a basis for the study of Muscadinia species, we generated chromosome-level whole-genome sequences of Muscadinia rotundifolia cv. Noble. A total of 393.8 Mb of sequences were assembled from 20 haploid chromosomes, and 26 394 coding genes were identified from the sequences. Comparative analysis with the genome sequence of V. vinifera revealed a smaller size of the M. rotundifolia genome but highly conserved gene synteny. A genome-wide association study of 12 Muscadinia berry-related traits was performed among 356 individuals from breeding populations of M. rotundifolia. For the transferability of markers between Euvitis and Muscadinia, we used 2000 core genome rhAmpSeq markers developed to allow marker transferability across Euvitis species. A total of 1599 (80%) rhAmpSeq markers returned data in Muscadinia. From the GWAS analyses, we identified a total of 52 quantitative trait nucleotides (QTNs) associated with the 12 berry-related traits. The transferable markers enabled the direct comparison of the QTNs with previously reported results. The whole-genome sequences along with the GWAS results provide a new basis for the extensive study of Muscadinia species.

19.
Front Plant Sci ; 13: 969301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991419

RESUMO

Muscadine berries display enhanced nutraceutical value due to the accumulation of distinctive phytochemical constituents with great potential antioxidant activity. Such nutritional and health merits are not only restricted to muscadine, but muscadine berries accumulate higher amounts of bioactive polyphenolics compared with other grape species. For the genetic study of the antioxidant trait in muscadine, a multi-locus genome-wide association study (GWAS) with 350 muscadine genotypes and 1,283 RNase H2 enzyme-dependent amplicon sequencing (rhAmpSeq) markers was performed. Phenotyping was conducted with several antioxidant-related traits, including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, and FRAP antioxidant assay in muscadine berry skin. The correlation coefficient analysis revealed that the TPC, and DPPH/FRAP activities were significantly correlated. Through the GWAS analysis, 12 QTNs were identified from the four traits, of which six were pleiotropic QTNs. Two pleiotropic QTNs, chr2_14464718 and chr4_16491374, were commonly identified from the TPC and DPPH/FRAP activities. Co-located genes with the two pleiotropic QTNs were isolated, and two candidate genes were identified with transcriptome analysis. UDP-glycosyltransferase and 4-hydroxy-4-methyl-2-oxoglutarate aldolase were the candidate genes that are positively and negatively correlated to the quantitative property of traits, respectively. These results are the first genetic evidence of the quantitative property of antioxidants in muscadine and provide genetic resources for breeding antioxidant-rich cultivars for both Muscadinia and Euvitis species.

20.
Commun Biol ; 5(1): 1012, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153380

RESUMO

Anthocyanins, a major class of flavonoids, are important pigments of grape berries. Despite the recent discovery of the genetic cause underlying the loss of color, the metabolomic and molecular responses are unknown. Anthocyanin quantification among diverse berry color muscadines suggests that all genotypes could produce adequate anthocyanin quantities, irrespective of berry color. Transcriptome profiling of contrasting color muscadine genotypes proposes a potential deficiency that occurs within the anthocyanin transport and/or degradation mechanisms and might cause unpigmented berries. Genome-wide association studies highlighted a region on chromosome-4, comprising several genes encoding glutathione S-transferases involved in anthocyanin transport. Sequence comparison among genotypes reveals the presence of two GST4b alleles that differ by substituting the conserved amino acid residue Pro171-to-Leu. Molecular dynamics simulations demonstrate that GST4b2-Leu171 encodes an inactive protein due to modifications within the H-binding site. Population genotyping suggests the recessive inheritance of the unpigmented trait with a GST4b2/2 homozygous. A model defining colorless muscadines' response to the mutation stimulus, avoiding the impact of trapped anthocyanins within the cytoplasm is established.


Assuntos
Antocianinas , Vitis , Aminoácidos/metabolismo , Antocianinas/genética , Flavonoides/análise , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo , Estudo de Associação Genômica Ampla , Glutationa/metabolismo , Mutação , Transferases/metabolismo , Vitis/genética , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA