Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Arch Biochem Biophys ; 755: 109985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579957

RESUMO

OBJECTIVE: To determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats. METHODS: 150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies. RESULTS: WJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-ß1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone. CONCLUSION: WJ-MSCs isolated from the umbilical cord and pretreated with VPA defended the kidney against IRI by more easily homing to the site of injury.

2.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 291-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37830380

RESUMO

The current study was conducted to explore the productive performance and health status of lactating buffaloes fed diets supplemented with probiotic and/or fibrolytic enzymes. Forty multiparous lactating Egyptian buffaloes (body weight 451 ± 8.5 kg) were equally assigned to four experimental groups: (1) the first group fed control diet, (2) second experimental group fed control diet plus 4 g of probiotic/kg dry matter (DM) (probiotic), (3) third experimental group fed control diet plus 4 g of fibrolytic enzymes/kg DM (enzymes) and (4) fourth experimental group fed control diet plus 2 g of probiotic + 2 g fibrolytic enzymes/kg DM (Mix), The experiment was extended for 63 days. Nutrients digestibility was estimated, daily milk yield was recorded and milk samples were analyzed for total solids, fat protein, lactose and ash. Blood serum samples were analyzed for glucose, total protein, albumin, urea-N, aspartate transaminase, alanine transaminase and cholesterol concentrations. Results showed that adding probiotic and/or fibrolytic enzymes improved nutrients digestibility (p < 0.05). The probiotic, enzymes and mix groups did not affect (p > 0.05) concentrations of serum total protein, albumin (A), globulin (G), albumin/globulin (A/G) ratio and urea-N concentrations. An improvement in daily milk yield (p < 0.0001) and energy-corrected milk (p = 0.0146) were observed with the probiotic and mix groups compared with the control. In conclusion, this study suggests that supplementing lactating buffaloes' diets with probiotic alone or in combination with fibrolytic enzymes would improve their productive performance without adversely impacting their health.


Assuntos
Globulinas , Probióticos , Feminino , Animais , Lactação/fisiologia , Búfalos , Ração Animal/análise , Digestão/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Leite/metabolismo , Nutrientes , Probióticos/farmacologia , Streptococcus , Albuminas , Globulinas/metabolismo , Ureia/metabolismo , Rúmen/metabolismo
3.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615551

RESUMO

In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage's results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.


Assuntos
Técnicas de Cultura Celular por Lotes , Ácidos Graxos , Animais , Ácidos Graxos/química , Fermentação , Dieta , Rúmen/metabolismo , Ácidos Graxos Insaturados/metabolismo , Suplementos Nutricionais , Óleo de Semente do Linho , Azeite de Oliva/metabolismo , Óleo de Milho/metabolismo , Água/metabolismo
4.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630420

RESUMO

Monoamine oxidase (MAO, EC 1.4.3.4) is responsible for the oxidative breakdown of both endogenous and exogenous amines and exists in MAO-A and MAO-B isomers. Eighteen indole-based phenylallylidene derivatives were synthesized via nucleophilic addition reactions comprising three sub-series, IHC, IHMC, and IHNC, and were developed and examined for their ability to inhibit MAO. Among them, compound IHC3 showed a strong MAO-B inhibitory effect with an IC50 (half-maximal inhibitory concentration) value of 1.672 µM, followed by IHC2 (IC50 = 16.934 µM). Additionally, IHC3 showed the highest selectivity index (SI) value of >23.92. The effectiveness of IHC3 was lower than the reference pargyline (0.14 µM); however, the SI value was higher than pargyline (17.16). Structurally, the IHC (-H in the B-ring) sub-series exhibited relatively stronger MAO-B inhibition than the others. In the IHC series, IHC3 (-F in the A-ring) exhibited stronger MAO-B suppression than the other substituted derivatives in the order -F > -Br > -Cl > -OCH3, -CH3, and -H at the 2-position in the A-ring. In the reversibility and enzyme kinetics experiments, IHC3 was a reversible inhibitor with a Ki value of 0.51 ± 0.15 µM for MAO-B. Further, it was observed that IHC3 greatly decreased the cell death caused by rotenone in SH-SY5Y neuroblastoma cells. A molecular docking study of the lead molecule was also performed to determine hypothetical interactions in the enzyme-binding cavity. These findings suggest that IHC3 is a strong, specific, and reversible MAO-B inhibitor that can be used to treat neurological diseases.


Assuntos
Antipsicóticos , Isatina , Neuroblastoma , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Micro-Ondas , Simulação de Acoplamento Molecular , Pargilina , Farmacóforo , Dopaminérgicos , Monoaminoxidase
5.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241888

RESUMO

Quercetin (QtN) displays low systemic bioavailability caused by poor water solubility and instability. Consequently, it exerts limited anticancer action in vivo. One solution to increase the anticancer efficacy of QtN is the use of appropriate functionalized nanocarriers that preferentially target and deliver the drug to the tumor location. Herein, a direct advanced method was designed to develop water-soluble hyaluronic acid (HA)-QtN-conjugated silver nanoparticles (AgNPs). HA-QtN reduced silver nitrate (AgNO3) while acting as a stabilizing agent to produce AgNPs. Further, HA-QtN#AgNPs served as an anchor for folate/folic acid (FA) conjugated with polyethylene glycol (PEG). The resulting PEG-FA-HA-QtN#AgNPs (further abbreviated as PF/HA-QtN#AgNPs) were characterized both in vitro and ex vivo. Physical characterizations included UV-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), particle size (PS) and zeta potential (ZP) measurements, and biopharmaceutical evaluations. The biopharmaceutical evaluations included analyses of the cytotoxic effects on the HeLa and Caco-2 cancer cell lines using the MTT assay; cellular drug intake into cancer cells using flow cytometry and confocal microscopy; and blood compatibility using an automatic hematology analyzer, a diode array spectrophotometer, and an enzyme-linked immunosorbent assay (ELISA). The prepared hybrid delivery nanosystem was hemocompatible and more oncocytotoxic than the free, pure QtN. Therefore, PF/HA-QtN#AgNPs represent a smart nano-based drug delivery system (NDDS) and could be a promising oncotherapeutic option if the data are validated in vivo.


Assuntos
Produtos Biológicos , Nanopartículas Metálicas , Neoplasias , Humanos , Ácido Hialurônico/química , Quercetina/farmacologia , Nanopartículas Metálicas/química , Células CACO-2 , Prata , Polietilenoglicóis/química , Água , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Anim Feed Sci Technol ; 300: 115644, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37266513

RESUMO

The objective of this study was to evaluate the effects of replacing raw rapeseed cake (RC) with fermented rapeseed cake (FRC) in the diet of dairy cows on methane (CH4) production, ruminal fermentation, and milk production, composition, and fatty acid composition. The Hohenheim gas test (exp. 1) was initially used to evaluate RC and FRC as substrates. Following batch fermentation, an in vitro study (exp. 2) was performed to assess the effects of replacing RC with FRC at 28.75, 57.5, 86.25, and 115 g/kg (FRC25, FRC50, FRC75, and FRC100) in the total mixed rations (TMR). Based on the in vitro results, the control TMR (115 g/kg dry matter (DM) of RC; CONRC) and experimental TMR (115 g/kg DM of FRC; FRC100) were chosen for an in vivo assessment. In exp. 3, four ruminally cannulated cows were used in a replicated 2 (group) × 2 (period) crossover design and fed the TMR ad libitum. In exp. 4, twenty multiparous Polish Holstein-Friesian cows in their mid-lactation (148 ± 26 d in milk) were used in a completely randomized design. The cows were fed a partial mixed ration without the RC and FRC, and the RC and FRC were supplied in a concentrate feeder at 2.65 kg/d/cow. The FRC100 markedly decreased CH4 production by 12% and archaeal population without adversely affecting nutrient digestibility. The molar proportion of propionate was increased, and the molar proportion of acetate and butyrate and acetate to propionate ratio were decreased by FRC100. No significant effects on milk production or composition, except an increase in milk urea concentration, were observed in cows fed FRC100. Milk C18:2 cis-9, trans-11 concentration was greater, and n-6 to n-3 fatty acid ratio was lower for FRC100 than CONRC. In-situ ruminal degradation of RC and FRC were explored using in-sacco techniques (exp. 5). The potential degradation and effective degradability of the DM, organic matter, and crude protein were significantly higher for FRC than RC. These results suggested that FRC could mitigate enteric CH4 production by decreasing archaeal abundances without adversely affecting milk production and ruminal fermentation in lactating cows.

7.
Curr Issues Mol Biol ; 44(10): 4490-4499, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286022

RESUMO

In the search for a new anti-MRSA lead compound, emodin was identified as a good lead against methicillin-resistant Staphylococcus aureus (MRSA). Emodin serves as a new scaffold to design novel and effective anti-MRSA agents. Because rational drug discovery is limited by the knowledge of the drug target, α-hemolysin of Staphylococcus aureus was used in this study because it has an essential role in Staphylococcus infections and because emodin shares structural features with compounds that target this enzyme. In order to explore emodin's interactions with α-hemolysin, all possible ligand binding pockets were identified and investigated. Two ligand pockets were detected based on bound ligands and other reports. The third pocket was identified as a cryptic site after molecular dynamics (MD) simulations. MD simulations were conducted for emodin in each pocket to identify the most plausible ligand site and to aid in the design of potent anti-MRSA agents. Binding of emodin to site 1 was most stable (RMSD changes within 1 Å), while in site 2, the binding pose of emodin fluctuated, and it left after 20 ns. In site 3, it was stable during the first 50 ns, and then it started to move out of the binding site. Site 1 is a possible ligand binding pocket, and this study sheds more light on interaction types, binding mode, and key amino acids involved in ligand binding essential for better lead design. Emodin showed an IC50 value of 6.3 µg/mL, while 1, 6, and 8 triacetyl emodin showed no activity against MRSA. A molecular modeling study was pursued to better understand effective binding requirements for a lead.

8.
J Enzyme Inhib Med Chem ; 37(1): 1556-1567, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635148

RESUMO

Sixteen [1, 2, 4]triazolo[4,3-a]quinoxalines as DNA intercalators-Topo II inhibitors have been prepared and their anticancer actions evaluated towards three cancer cell lines. The new compounds affected on high percentage of MCF-7. Derivatives 7e, 7c and 7b exhibited the highest anticancer activities. Their activities were higher than that of doxorubicin. Molecular docking studies showed that the HBA present in the chromophore, the substituted distal phenyl moiety and the extended linkers enable our derivatives to act as DNA binders. Also, the pyrazoline moiety formed six H-bonds and improved affinities with DNA active site. Finally, 7e, 7c and 7b exhibited the highest DNA affinities and act as traditional intercalators of DNA. The most active derivatives 7e, 7c, 7b, 7g and 6e were subjected to evaluate their Topo II inhibition and DNA binding actions. Derivative 7e exhibited the highest binding affinity. It intercalates DNA at IC50 = 29.06 µM. Moreover, compound 7e potently intercalates DNA at an IC50 value of 31.24 µM. Finally, compound 7e demonstrated the most potent Topo II inhibitor at a value of 0.890 µM. Compound 7c exhibited an equipotent IC50 value (0.940 µM) to that of doxorubicin. Furthermore, derivatives 7b, 7c, 7e and 7g displayed a high ADMET profile.


Assuntos
Substâncias Intercalantes , Inibidores da Topoisomerase II , DNA , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
9.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682646

RESUMO

Trastuzumab (Trz) is a humanized monoclonal antibody targeting epidermal growth factor receptor 2 (HER2; ErbB2). The combined administration of Trz and doxorubicin (DOX) has shown potent anti-cancer efficacy; however, this regimen may be accompanied by severe cardiac toxicity. Mesenchymal stem cells (MSCs)-derived exosomes are nanosized vesicles that play a crucial role in cell-cell communication and have shown efficacy in the treatment of various diseases. In this study, we aim to investigate the cardioprotective effects of MSCs-derived exosomes in a DOX/Trz- mediated cardiotoxicity model, and the possible mechanisms underlying these effects are elucidated. Forty-nine male rats were randomly assigned into four groups: Group I (control); Group II (Dox/Trz); Group III (protective group); and Group IV (curative group). Cardiac hemodynamic parameters, serum markers of cardiac injury, oxidative stress indices, and cardiac histopathology were investigated. Further, transcript profile of specific cardiac tissue injury markers, apoptotic markers, and fibrotic markers were analyzed using qRT-PCR, while the protein expressions of pAkt/Akt, pERK/ERK, pJNK/JNK, pJNK/JNK, and pSTAT3/STAT3 were evaluated by ELISA. Additionally, cardiac mirR-21 and miR-26a were assessed. A combined administration of DOX/Trz disrupted redox and Ca2+ homeostasis in cardiac tissue induced myocardial fibrosis and myofibril loss and triggered cardiac DNA damage and apoptosis. This cardiotoxicity was accompanied by decreased NRG-1 mRNA expression, HER2 protein expression, and suppressed AKT and ERK phosphorylation, while triggering JNK phosphorylation. Histological and ultra-structural examination of cardiac specimens revealed features typical of cardiac tissue injury. Moreover, a significant decline in cardiac function was observed through biochemical testing of serum cardiac markers and echocardiography. In contrast, the intraperitoneal administration of MSCs-derived exosomes alleviated cardiac injury in both protective and curative protocols; however, superior effects were observed in the protective protocol. The results of the current study indicate the ability of MSCs-derived exosomes to protect from and attenuate DOX/Trz-induced cardiotoxicity. The NRG-1/HER2, MAPK, PI3K/AKT, PJNK/JNK, and PSTAT/STAT signaling pathways play roles in mediating these effects.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Animais , Apoptose , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Exossomos/metabolismo , Fibrose , Masculino , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Neuregulina-1/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Trastuzumab
10.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36362011

RESUMO

Manganese neurotoxicity has been reported to cause a neurodegenerative disease known as parkinsonism. Previous reports have shown that the expression of the KH-type splicing regulatory protein (KHSRP), a nucleic acid-binding protein, and NLRP3 is increased upon Mn exposure. However, the relation between these two during Mn toxicity has not been fully deduced. The mouse neuroblastoma (N2a) and SD rats are treated with LPS and MnCl2 to evaluate the expression of KHSRP and NLRP3. Further, the effect of the NLRP3 inhibitor MCC950 is checked on the expression of NLRP3, KHSRP and pro-inflammatory markers (TNFα, IL-18 and IL-1ß) as well as the caspase-1 enzyme. Our results demonstrated an increment in NLRP3 and KHSRP expression post-MnCl2 exposure in N2a cells and rat brain, while on the other hand with LPS exposure only NLRP3 expression levels were elevated and KHSRP was found to be unaffected. An increased expression of KHSRP, NLRP3, pro-inflammatory markers and the caspase-1 enzyme was observed to be inhibited with MCC950 treatment in MnCl2-exposed cells and rats. Manganese exposure induces NLRP3 and KHSRP expression to induce neuroinflammation, suggesting a correlation between both which functions in toxicity-related pathways. Furthermore, MCC950 treatment reversed the role of KHSRP from anti-inflammatory to pro-inflammatory.


Assuntos
Manganês , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Animais , Camundongos , Ratos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Manganês/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/etiologia , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley
11.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080338

RESUMO

Bone morphogenetic proteins (BMPs) are growth factors that have a vital role in the production of bone, cartilage, ligaments, and tendons. Tumors' upregulation of bone morphogenetic proteins (BMPs) and their receptors are key features of cancer progression. Regulation of the BMP kinase system is a new promising strategy for the development of anti-cancer drugs. In this work, based on a careful literature study, a library of benzothiophene and benzofuran derivatives was subjected to different computational techniques to study the effect of chemical structure changes on the ability of these two scaffolds to target BMP-2 inducible kinase, and to reach promising candidates with proposed activity against BMP-2 inducible kinase. The results of screening against Lipinski's and Veber's Rules produced twenty-one outside eighty-four compounds having drug-like molecular nature. Computational ADMET studies favored ten compounds (11, 26, 27, 29, 30, 31, 34, 35, 65, and 72) with good pharmacokinetic profile. Computational toxicity studies excluded compound 34 to elect nine compounds for molecular docking studies which displayed eight compounds (26, 27, 29, 30, 31, 35, 65, and 72) as promising BMP-2 inducible kinase inhibitors. The nine fascinating compounds will be subjected to extensive screening against serine/threonine kinases to explore their potential against these critical proteins. These promising candidates based on benzothiophene and benzofuran scaffolds deserve further clinical investigation as BMP-2 kinase inhibitors for the treatment of cancer.


Assuntos
Benzofuranos , Proteína Morfogenética Óssea 2 , Benzofuranos/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases
12.
Molecules ; 27(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458775

RESUMO

The ever-increasing rate of pollution has attracted considerable interest in research. Several anthropogenic activities have diminished soil, air, and water quality and have led to complex chemical pollutants. This review aims to provide a clear idea about the latest and most prevalent pollutants such as heavy metals, PAHs, pesticides, hydrocarbons, and pharmaceuticals-their occurrence in various complex mixtures and how several environmental factors influence their interaction. The mechanism adopted by these contaminants to form the complex mixtures leading to the rise of a new class of contaminants, and thus resulting in severe threats to human health and the environment, has also been exhibited. Additionally, this review provides an in-depth idea of various in vivo, in vitro, and trending biomarkers used for risk assessment and identifies the occurrence of mixed contaminants even at very minute concentrations. Much importance has been given to remediation technologies to understand our current position in handling these contaminants and how the technologies can be improved. This paper aims to create awareness among readers about the most ubiquitous contaminants and how simple ways can be adopted to tackle the same.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Metais Pesados , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluentes Ambientais/toxicidade , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Praguicidas/análise , Praguicidas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
13.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268696

RESUMO

Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body's healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fitosteróis , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta , Humanos , Fitosteróis/farmacologia , Fitosteróis/uso terapêutico , Esteróis
14.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163879

RESUMO

Osteoporosis is a skeletal disease that is both systemic and silent characterized by an unbalanced activity of bone remodeling leading to bone loss. Rising evidences demonstrate that thyroid stimulating hormone (TSH) has an important role in the regulation on the metabolism of bone. However, TSH regulation on human osteoblast essential transcriptional factors has not been identified. Current study examined the role of TSH on human osteoblastic Runx2 expression and their functional genes by in vitro and in slico analysis. Human osteoblast like (HOS and SaoS-2) cells were cultured with DMEM and treated with hTSH at the concentration of 0.01 ng/mL and 10 ng/mL. After treatment, osteoblastic Runx2 and IGF-1R beta expression were studied using RT-PCR and western blot analysis. TSH treatment induced osteoblastic essential transcriptional factor, Runx2 in HOS and SaOS2 cells on 48 h duration and elevated the expression of IGF-IR ß gene and Protein in SaoS-2 cells. TSH also promotes Runx2 responsive genes such as ALP, Collagen and osteocalcin in SaOS2 cells on day 2 to day 14 of 10 ng/mL of treatment and favors' matrix mineralization matrix in these cells. In addition, TSH facilitated human osteoblastic cells to mineralize their matrix confirmed by day 21 of alizarin red calcium staining. In silico study was performed to check CREB and ELK1 interaction with Runx2. Results of in silico analysis showed that TSH mediated signalling molecules such as CREB and ELK1 showed interaction with Runx2 which involve in osteobalstic gene expression and differentiation. Present findings confirm that TSH promotes Runx2 expression, osteoblastic responsive genes and bone matrix formation.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Simulação por Computador , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/fisiologia , Osteogênese , Tireotropina/farmacologia , Matriz Óssea/citologia , Matriz Óssea/fisiologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Humanos , Técnicas In Vitro , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos
15.
Saudi Pharm J ; 30(11): 1603-1611, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36465850

RESUMO

This study was performed with the main objective of formulating and evaluating the potential of ethosomesl gel (Etho gel) to deliver nimodipine (NiM) for cardiovascular disease, a potent water insoluble anti-hypertensive drug via skin to reach the deeper layers of skin. The Box-Behnken design (BBD) was used to optimize the NiM-Eth to determine the impact of the independent and depended variables. The effectiveness of drug entrapment, vesicle size, and cumulative drug release were assessed for the NiM loaded ethosomes and NiM-Eth gel using carbopol 934 as a gelling agent. Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Power X-ray diffraction (PXRD), and scanning electron microscopy (SEM) analysis were performed and analysed their physicochemical characters. Rat abdomen skin was used to investigate drug permeability and deposition. As compared to marketed products, NiM-Eth gel produced an improved drug permeability in ex vivo experiments. The mean AUC0 to AUC0-∞ of NiM-Eth gel when compared to oral formulation (Nymalize oral preparation) was found to be increased from 4.1 to 5.9 folds which was found to be resulted from first pass effect. Histophatlogical findings revealed that the maximum amount of NiM penetrated the stratum corneum of the skin and create drug depots in the deep layer. In summary, it can be said that NiM might be successfully prepared in NiM-Eth gel for transdermal drug delivery.

16.
Bioorg Chem ; 114: 105100, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246972

RESUMO

Cisplatin (CP) is an effective chemotherapeutic agent for treatment of various types of cancer, however efforts are needed to reduce its toxic side effect. Previous studies revealed promising effect of peptides in decreasing CP induced nephrotoxicity. Herein, novel Met-based peptidomimetics were synthesized using N-acylbenzotriazole as acylating agent in high yield. Evaluation of renoprotective effect of the synthesized targets on CP treated kidney cell line (LLC-PK1) revealed that pretreatment with 1/3 IC50 of targets II, IIIa-g attenuated CP induced cell death where the IC50 of CP was raised from 3.28 µM to 9.25-41.1 µM. The most potent compounds IIIg, II and IIIb exhibited antioxidative stress in CP-treated LLC-PK1 cells as confirmed by raising GSH/GSSG ratio and SOD concentration as well as decreasing ROS and MDA. Additionally, in vivo experiments using Sprague Dawley rats showed renoprotective effect of IIIg against CP-induced nephrotoxicity as evidenced by improved results of renal function tests and attenuated CP-induced renal structural injury. Moreover, antioxidant activity of IIIg was demonstrated via its ability to reduce renal MDA level and up-regulate renal antioxidant element GSH level. Further, immunohistochemistry of renal specimens showed the ability of IIIg to restore CP-induced suppression of Nrf2. Interestingly, in vivo and in vitro studies demonstrated that IIIg had no effect on CP antiproliferative activity. An assessment of the ADMET properties revealed that targets IIIg, II and IIIb showed good drug-likeness in terms of their physicochemical, pharmacokinetic properties. The findings presented here showcase that IIIg is a promising renoprotective candidate with antioxidative stress potential.


Assuntos
Desenho de Fármacos , Metionina/farmacologia , Peptidomiméticos/farmacologia , Substâncias Protetoras/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cisplatino/antagonistas & inibidores , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Humanos , Metionina/síntese química , Metionina/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Peptidomiméticos/síntese química , Peptidomiméticos/química , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639002

RESUMO

Renal toxicity is a serious side effect that hinders the use of cisplatin, a commonly used and effective chemotherapeutic agent. Meanwhile, quinacrine is an FDA approved drug that has been stated for its anti-inflammatory effect. Thus, we investigated the ameliorative effect of quinacrine against cisplatin-induced renal toxicity. Single intraperitoneal (i.p.) 10 mg/kg cisplatin administration induced renal injury in rats. Our results showed that 10 mg/kg/day quinacrine decreased the mortality rate of rats from 46.15% (cisplatin group) to 12.5%, and significantly decreased renal tissue fibrosis, relative kidney to body weight ratio, serum creatinine and urea levels compared with the cisplatin group. Indeed, quinacrine significantly decreased renal malondialdehyde concentration and increased renal total antioxidant capacity, compared with the cisplatin group. Furthermore, quinacrine caused significant upregulation of renal sirtuin-1 (SIRT-1) with significant downregulation of intercellular adhesion molecule-1 (ICAM-1) and tumor necrosis factor-α (TNF-α). Moreover, quinacrine significantly blocked cisplatin-induced apoptosis, which was made evident by downregulating renal apoptotic proteins (BAX and p53) and upregulating the renal anti-apoptotic protein BCL2, compared with the cisplatin group. In conclusion, this study demonstrates, for the first time, that quinacrine alleviates cisplatin-induced renal toxicity via upregulating SIRT-1, downregulating inflammatory markers (ICAM-1 and TNF-α), reducing oxidative stress, and inhibiting apoptosis.


Assuntos
Cisplatino/efeitos adversos , Nefropatias/etiologia , Nefropatias/metabolismo , Quinacrina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/diagnóstico , Nefropatias/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
18.
Molecules ; 26(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34946766

RESUMO

The development of the field of nanotechnology has revolutionized various aspects in the fields of modern sciences. Nano-medicine is one of the primary fields for the application of nanotechnology techniques. The current study sheds light on the reno-protective impacts of gold nano-particles; nanogold (AuNPs) against 5-flurouracil (5-FU)-induced renal toxicity. Indeed, the use of 5-FU has been associated with kidney injury which greatly curbs its therapeutic application. In the current study, 5-FU injection was associated with a significant escalation in the indices of renal injury, i.e., creatinine and urea. Alongside this, histopathological and ultra-histopathological changes confirmed the onset of renal injury. Both gene and/or protein expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and downstream antioxidant enzymes revealed consistent paralleled anomalies. AuNPs administration induced a significant renal protection on functional, biochemical, and structural levels. Renal expression of the major sensor of the cellular oxidative status Nrf-2 escalated with a paralleled reduction in the renal expression of the other contributor to this axis, known as Kelch-like ECH-associated protein 1 (Keap-1). On the level of the effector downstream targets, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (γ-GCS) AuNPs significantly restored their gene and protein expression. Additionally, combination of AuNPs with 5-FU showed better cytotoxic effect on MCF-7 cells compared to monotreatments. Thus, it can be inferred that AuNPs conferred reno-protective impact against 5-FU with an evident modulatory impact on Nrf-2/Keap-1 and its downstream effectors, HO-1 and γ-GCS, suggesting its potential use in 5-FU regimens to improve its therapeutic outcomes and minimize its underlying nephrotoxicity.


Assuntos
Fluoruracila/antagonistas & inibidores , Ouro/farmacologia , Rim/efeitos dos fármacos , Nanopartículas Metálicas/química , Animais , Modelos Animais de Doenças , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Ouro/administração & dosagem , Ouro/química , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Injeções Intraperitoneais , Rim/lesões , Rim/patologia , Nanopartículas Metálicas/administração & dosagem , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Nanotecnologia , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , gama-Glutamilciclotransferase/antagonistas & inibidores , gama-Glutamilciclotransferase/metabolismo
19.
Molecules ; 26(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833950

RESUMO

Nifuroxazide is an antidiarrheal medication that has promising anticancer activity against diverse types of tumors. The present study tested the anticancer activity of nifuroxazide against Ehrlich's mammary carcinoma grown in vivo. Furthermore, we investigated the effect of nifuroxazide on IL-6/jak2/STAT3 signaling and the possible impact on tumor angiogenesis. The biological study was supported by molecular docking and bioinformatic predictions for the possible effect of nifuroxazide on this signaling pathway. Female albino mice were injected with Ehrlich carcinoma cells to produce Ehrlich's solid tumors (ESTs). The experimental groups were as follows: EST control, EST + nifuroxazide (5 mg/kg), and EST + nifuroxazide (10 mg/kg). Nifuroxazide was found to reduce tumor masses (730.83 ± 73.19 and 381.42 ± 109.69 mg vs. 1099.5 ± 310.83) and lessen tumor pathologies. Furthermore, nifuroxazide downregulated IL-6, TNF-α, NFk-ß, angiostatin, and Jak2 proteins, and it also reduced tumoral VEGF, as indicated by ELISA and immunohistochemical analysis. Furthermore, nifuroxazide dose-dependently downregulated STAT3 phosphorylation (60% and 30% reductions, respectively). Collectively, the current experiment shed light on the antitumor activity of nifuroxazide against mammary solid carcinoma grown in vivo. The antitumor activity was at least partly mediated by inhibition of IL-6/Jak2/STAT3 signaling that affected angiogenesis (low VEGF and high angiostatin) in the EST. Therefore, nifuroxazide might be a promising antitumor medication if appropriate human studies will be conducted.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Hidroxibenzoatos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Nitrofuranos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinoma de Ehrlich/metabolismo , Feminino , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Neovascularização Patológica/metabolismo , Fator de Transcrição STAT3/metabolismo
20.
Toxicol Mech Methods ; 31(2): 138-149, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33190582

RESUMO

Colon cancer is the commonest cancer worldwide. α-Hederin is a monodesmosidic triterpenoid saponin possessing diverse pharmacological activities. The running experiment was designed to test the chemopreventive activity of α-hederin when used as an adjuvant to carboplatin in an experimental model of mouse colon hyperplasia induced by 1,2-dimethylhydrazine (DMH). Fifty male Swiss albino mice were classified into five groups: group (I): saline group, group (II): DMH-induced colon hyperplasia control group, group (III): DMH + carboplatin (5 mg/kg) group, group (IV): DMH + α-hederin (80 mg/kg) group, and group (V): DMH + carboplatin (5 mg/kg)+α-hederin (80 mg/kg) group. Analyzing of colonic tissue indicated that the disease control group showed higher colon levels of phospho-PI3K to total-PI3K, phospho-AKT to total-AKT and cyclin D1 concurrent with lower phospho-JNK/total JNK ratio and caspase 3. However, treatment with α-hederin, in combination with carboplatin, favorably ameliorated phosphorylation of PI3K/AKT/JNK proteins, increased colon caspase 3 and downregulated cyclin D1. Microscopically, α-hederin, in combination with carboplatin, produced the most reduction in the histologic hyperplasia score, enhanced the goblet cell survival in periodic acid Schiff staining and reduced proliferation (Ki-67 immunostaining) in the current colon hyperplasia model. Collectively, the current study highlighted for the first time that using α-hederin as an adjuvant to carboplatin enhanced its chemopreventive activity, improved JNK signaling and increased apoptosis. Hence, further studies are warranted to test α-hederin as a promising candidate with chemotherapeutic agents in treating colon cancer.


Assuntos
Neoplasias do Colo , Ácido Oleanólico , 1,2-Dimetilidrazina , Animais , Apoptose , Carboplatina/toxicidade , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Hiperplasia/prevenção & controle , Masculino , Camundongos , Fosfatidilinositol 3-Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA