Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 134(4): 041001, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22667676

RESUMO

Drug-resistant hypertensive patients may be treated by mechanical stimulation of stretch-sensitive baroreceptors located in the sinus of carotid arteries. To evaluate the efficacy of endovascular devices to stretch the carotid sinus such that the induced strain might trigger baroreceptors to increase action potential firing rate and thereby reduce systemic blood pressure, numerical simulations were conducted of devices deployed in subject-specific carotid models. Two models were chosen--a typical physiologic carotid and a diminutive atypical physiologic model representing a clinically worst case scenario--to evaluate the effects of device deployment in normal and extreme cases, respectively. Based on the anatomical dimensions of the carotids, two different device sizes were chosen out of five total device sizes available. A fluid structure interaction (FSI) simulation methodology with contact surface between the device and the arterial wall was implemented for resolving the stresses and strains induced by device deployment. Results indicate that device deployment in the carotid sinus of the physiologic model induces an increase of 2.5% and 7.5% in circumferential and longitudinal wall stretch, respectively, and a maximum of 54% increase in von Mises arterial stress at the sinus wall baroreceptor region. The second device, deployed in the diminutive carotid model, induces an increase of 6% in both circumferential and longitudinal stretch and a 50% maximum increase in von Mises stress at the sinus wall baroreceptor region. Device deployment has a minimal effect on blood-flow patterns, indicating that it does not adversely affect carotid bifurcation hemodynamics in the physiologic model. In the smaller carotid model, deployment of the device lowers wall shear stress at sinus by 16% while accelerating flow entering the external carotid artery branch. Our FSI simulations of carotid arteries with deployed device show that the device induces localized increase in wall stretch at the sinus, suggesting that this will activate baroreceptors and subsequently may control hypertension in drug-resistant hypertensive patients, with no consequential deleterious effects on the carotid sinus hemodynamics.


Assuntos
Seio Carotídeo/fisiopatologia , Resistência a Medicamentos , Procedimentos Endovasculares/instrumentação , Hidrodinâmica , Hipertensão/fisiopatologia , Hipertensão/terapia , Próteses e Implantes , Fenômenos Biomecânicos , Procedimentos Endovasculares/efeitos adversos , Hemodinâmica , Hipertensão/tratamento farmacológico , Modelos Biológicos , Propriedades de Superfície
2.
Opt Express ; 15(19): 12068-75, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19547571

RESUMO

We demonstrate a technique for a single shot mapping of nonlinear phase shift profiles in spatial solitons that are formed during short pulse propagation through one-dimensional slab AlGaAs waveguides, in the presence of a focusing Kerr nonlinearity. The technique uses a single beam and relies on the introduction of a lithographically etched reflective planar mirror surface positioned in proximity to the beam's input position. Using this setup we demonstrate nonlinearity-induced sharp lateral phase variations for certain initial conditions, and creation of higher spatial harmonics when the beam is in close proximity to the mirror.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA