Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591683

RESUMO

The plasmonic coupling between silver (Ag) and gold (Au) nanoparticles (NPs) under four polarization modes was examined: a longitudinal mode (L-mode), where the electric field of a linearly polarized incident light parallels the dimer axis, and three transverse modes (T-modes), where the electric field of the light is perpendicular to the dimer axis. The coupling was studied using the discrete dipole approximation followed by an in-house postprocessing code that determines the extinction (Qext), absorption (Qabs), and near-field (Qnf) spectra from the individual NPs as well as the whole system. In agreement with the literature results, the extinction/absorption spectra of the whole dimer have two peaks, one near the Ag localized surface plasmon resonance (LSPR) region and the other at the Au LSPR region, with the peak at Ag LSPR being reduced in all modes and the peak at Au LSPR being red-shifted and increased in the L-mode but not in the T-modes. It is further shown that the scattering at the Ag LSPR region is reduced and becomes less than the isolated Ag NPs, but the absorption at the Ag LSPR is increased and becomes greater than the isolated Ag NPs for the 50 nm Ag-Au heterodimer. This suggests that the scattering from Ag NPs is being reabsorbed by the neighboring Au NPs due to the interband electronic transition in Au at that wavelength range. The Qext from the individual NP in the heterodimer shows the presence of the Fano profile on the Au NP but not on the Ag NP. This phenomenon was further investigated by using a dielectric particle (DP) placed near the Ag or Au NPs. The Fano profile appears in the absorbing DP spectra placed near either Ag or Au NPs. However, the Fano profile is masked upon further increases in the refractive index value of the DP particle. This explains the absence of a Fano profile on the Ag NPs in the Ag-Au heterodimer. The large near-field enhancement on both Ag and Au NPs at the Au plasmonic wavelength in the L-mode for large NPs was investigated through a DP-Au system. The large enhancement was shown to arise from a large imaginary component of the DP refractive index and a small real component. Through examination of both the near- and far-field properties of the individual NPs as well as the whole system and examinations of DP-Ag and DP-Au systems, our study provides a new understanding of the couplings between Ag and Au NPs.

2.
ACS Appl Mater Interfaces ; 16(2): 2041-2057, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38173420

RESUMO

Cancer is the second leading cause of death attributed to disease worldwide. Current standard detection methods often rely on a single cancer marker, which can lead to inaccurate results, including false negatives, and an inability to detect multiple cancers simultaneously. Here, we developed a multiplex method that can effectively detect and classify surface proteins associated with three distinct types of breast cancer by utilizing gap-enhanced Raman scattering nanotags and machine learning algorithm. We synthesized anisotropic magnetic core-gold shell gap-enhanced Raman nanotags incorporating three different Raman reporters. These multicolor Raman nanotags were employed to distinguish specific surface protein markers in breast cancer cells. The acquired signals were deconvoluted and analyzed using classical least-squares regression to generate a surface protein profile and characterize the breast cancer cells. Furthermore, computational data obtained via finite-difference time-domain and discrete dipole approximation showed the amplification of the electric fields within the gap region due to plasmonic coupling between the two gold layers. Finally, a random forest classifier achieved an impressive classification and profiling accuracy of 93.9%, enabling effective distinguishing between the three different types of breast cancer cell lines in a mixed solution. With the combination of immunomagnetic multiplex target specificity and separation, gap-enhancement Raman nanotags, and machine learning, our method provides an accurate and integrated platform to profile and classify different cancer cells, giving implications for identification of the origin of circulating tumor cells in the blood system.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Humanos , Feminino , Análise Espectral Raman/métodos , Neoplasias da Mama/diagnóstico , Ouro , Algoritmos , Proteínas de Membrana , Fenômenos Magnéticos
3.
Nanomaterials (Basel) ; 13(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947737

RESUMO

Gap-enhanced Raman tags are a new type of optical probe that have wide applications in sensing and detection. A gap-enhanced Raman tag is prepared by embedding Raman molecules inside a gap between two plasmonic metals such as an Au core and Au shell. Even though placing Raman molecules beneath an Au shell seems counter-intuitive, it has been shown that such systems produce a stronger surface-enhanced Raman scattering response due to the strong electric field inside the gap. While the theoretical support of the stronger electric field inside the gap was provided in the literature, a comprehensive understanding of how the electric field inside the gap compares with that of the outer surface of the particle was not readily available. We investigated Au@SiO2@Au nanoparticles with diameters ranging from 35 nm to 70 nm with varying shell (2.5-10 nm) and gap (2.5-15 nm) thicknesses and obtained both far-field and near-field spectra. The extinction spectra from these particles always have two peaks. The low-energy peak redshifts with the decreasing shell thickness. However, when the gap thickness decreases, the low-energy peaks first blueshift and then redshift, producing a C-shape in the peak position. For every system we investigated, the near-field enhancement spectra were stronger inside the gap than on the outer surface of the nanoparticle. We find that a thin shell combined with a thin gap will produce the greatest near-field enhancement inside the gap. Our work fills the knowledge gap between the exciting potential applications of gap-enhanced Raman tags and the fundamental knowledge of enhancement provided by the gap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA