Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 28(20): 115698, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069080

RESUMO

A series of allosteric kidney-type glutaminase (GLS) inhibitors possessing a mercaptoethyl (SCH2CH2) linker were synthesized in an effort to further expand the structural diversity of chemotypes derived from bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a prototype allosteric inhibitor of GLS. BPTES analog 3a with a mercaptoethyl linker between the two thiadiazole rings was found to potently inhibit GLS with an IC50 value of 50 nM. Interestingly, the corresponding derivative with an n-propyl (CH2CH2CH2) linker showed substantially lower inhibitory potency (IC50 = 2.3 µM) while the derivative with a dimethylsulfide (CH2SCH2) linker showed no inhibitory activity at concentrations up to 100 µM, underscoring the critical role played by the mercaptoethyl linker in the high affinity binding to the allosteric site of GLS. Additional mercaptoethyl-linked compounds were synthesized and tested as GLS inhibitors to further explore SAR within this scaffold including derivatives possessing a pyridazine as a replacement for one of the two thiadiazole moiety.


Assuntos
Derivados de Benzeno/farmacologia , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Rim/enzimologia , Compostos de Sulfidrila/farmacologia , Sítio Alostérico/efeitos dos fármacos , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutaminase/metabolismo , Humanos , Estrutura Molecular , Solubilidade , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
2.
Proteomics ; 19(21-22): e1800451, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31231915

RESUMO

The targeting of glutamine metabolism specifically via pharmacological inhibition of glutaminase 1 (GLS1) has been translated into clinical trials as a novel therapy for several cancers. The results, though encouraging, show room for improvement in terms of tumor reduction. In this study, the glutaminase II pathway is found to be upregulated for glutamate production upon GLS1 inhibition in pancreatic tumors. Moreover, genetic suppression of glutamine transaminase K (GTK), a key enzyme of the glutaminase II pathway, leads to the complete inhibition of pancreatic tumorigenesis in vivo unveiling GTK as a new metabolic target for cancer therapy. These results suggest that current trials using GLS1 inhibition as a therapeutic approach targeting glutamine metabolism in cancer should take into account the upregulation of other metabolic pathways that can lead to glutamate production; one such pathway is the glutaminase II pathway via GTK.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutaminase/genética , Liases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Transaminases/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Glutamina/genética , Glutamina/metabolismo , Humanos , Liases/antagonistas & inibidores , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transaminases/antagonistas & inibidores
3.
Proc Natl Acad Sci U S A ; 113(36): E5328-36, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27559084

RESUMO

Targeting glutamine metabolism via pharmacological inhibition of glutaminase has been translated into clinical trials as a novel cancer therapy, but available drugs lack optimal safety and efficacy. In this study, we used a proprietary emulsification process to encapsulate bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a selective but relatively insoluble glutaminase inhibitor, in nanoparticles. BPTES nanoparticles demonstrated improved pharmacokinetics and efficacy compared with unencapsulated BPTES. In addition, BPTES nanoparticles had no effect on the plasma levels of liver enzymes in contrast to CB-839, a glutaminase inhibitor that is currently in clinical trials. In a mouse model using orthotopic transplantation of patient-derived pancreatic tumor tissue, BPTES nanoparticle monotherapy led to modest antitumor effects. Using the HypoxCR reporter in vivo, we found that glutaminase inhibition reduced tumor growth by specifically targeting proliferating cancer cells but did not affect hypoxic, noncycling cells. Metabolomics analyses revealed that surviving tumor cells following glutaminase inhibition were reliant on glycolysis and glycogen synthesis. Based on these findings, metformin was selected for combination therapy with BPTES nanoparticles, which resulted in significantly greater pancreatic tumor reduction than either treatment alone. Thus, targeting of multiple metabolic pathways, including effective inhibition of glutaminase by nanoparticle drug delivery, holds promise as a novel therapy for pancreatic cancer.


Assuntos
Metformina/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Sulfetos/administração & dosagem , Tiadiazóis/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Benzenoacetamidas/uso terapêutico , Linhagem Celular Tumoral , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Humanos , Camundongos , Nanopartículas/química , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Sulfetos/química , Tiadiazóis/química , Tiadiazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Rep ; 27(2): 491-501.e6, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970252

RESUMO

N-acetyl-aspartyl-glutamate (NAAG) is a peptide-based neurotransmitter that has been extensively studied in many neurological diseases. In this study, we show a specific role of NAAG in cancer. We found that NAAG is more abundant in higher grade cancers and is a source of glutamate in cancers expressing glutamate carboxypeptidase II (GCPII), the enzyme that hydrolyzes NAAG to glutamate and N-acetyl-aspartate (NAA). Knocking down GCPII expression through genetic alteration or pharmacological inhibition of GCPII results in a reduction of both glutamate concentrations and cancer growth. Moreover, targeting GCPII in combination with glutaminase inhibition accentuates these effects. These findings suggest that NAAG serves as an important reservoir to provide glutamate to cancer cells through GCPII when glutamate production from other sources is limited. Thus, GCPII is a viable target for cancer therapy, either alone or in combination with glutaminase inhibition.


Assuntos
Ácido Glutâmico/metabolismo , Neoplasias/genética , Humanos
5.
J Med Chem ; 59(18): 8621-33, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27560860

RESUMO

The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON, 1) has shown robust anticancer efficacy in preclinical and clinical studies, but its development was halted due to marked systemic toxicities. Herein we demonstrate that DON inhibits glutamine metabolism and provides antitumor efficacy in a murine model of glioblastoma, although toxicity was observed. To enhance DON's therapeutic index, we utilized a prodrug strategy to increase its brain delivery and limit systemic exposure. Unexpectedly, simple alkyl ester-based prodrugs were ineffective due to chemical instability cyclizing to form a unique diazo-imine. However, masking both DON's amine and carboxylate functionalities imparted sufficient chemical stability for biological testing. While these dual moiety prodrugs exhibited rapid metabolism in mouse plasma, several provided excellent stability in monkey and human plasma. The most stable compound (5c, methyl-POM-DON-isopropyl-ester) was evaluated in monkeys, where it achieved 10-fold enhanced cerebrospinal fluid to plasma ratio versus DON. This strategy may provide a path to DON utilization in glioblastoma multiforme patients.


Assuntos
Antimetabólitos Antineoplásicos/líquido cefalorraquidiano , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Diazo-Oxo-Norleucina/líquido cefalorraquidiano , Diazo-Oxo-Norleucina/uso terapêutico , Glioblastoma/tratamento farmacológico , Pró-Fármacos/farmacocinética , Pró-Fármacos/uso terapêutico , Animais , Neoplasias Encefálicas/metabolismo , Feminino , Glioblastoma/metabolismo , Glutamina/metabolismo , Haplorrinos , Humanos , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA