Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 265: 115489, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738770

RESUMO

From the Rapid Alert System for Food and Feed (RASFF) database, a total of 4728 notifications regarding the six most frequently notified heavy metals (i.e., arsenic, cadmium, lead, mercury, chromium, and nickel) were tracked from January 1, 2000, to December 31, 2022, and analyzed based on year, notification classification, notifying countries, countries of origin, product types, product categories, risk decision, and action taken. Human risk assessment owing to consumption of mercury- and cadmium-contaminated seafood was estimated as well. Results revealed that the highest numbers of notifications were on mercury (36.6%), cadmium (25.1%), and lead (14.1%). Interestingly, the number of total notifications was at its peak between 2011 and 2014; from 2015 onward, it started to decrease considerably. Alert, border rejection, and information notifications represented 29.6%, 21.9%, and 48.5% of the total notifications, respectively. Chromium and nickel resulted in 33.8% and 23.3% of border rejection notifications, respectively. About 52.0% of the alert notifications were on mercury. Serious notifications represented 34.9% of the total notifications. Mercury and cadmium notifications accounted for 54.9% and 25.8% of serious notifications, respectively. Italy was the most notifying country, recording the highest number of notifications on cadmium (29.0%), mercury (52.6%), chromium (81.0%), and nickel (78.7%). China was the most notified origin country with regards to arsenic (18.7%), cadmium (12.8%), lead (27.6%), chromium (71.2%), and nickel (66.9%) notifications. Notifications on food, food contact materials (FCM), and feed represented 71.9%, 23.4%, and 4.7%, respectively, of the total notifications. About 91.5% of mercury notifications were on fish and fish products; 24.3% of arsenic notifications related to fruits and vegetables; and 20.1% of cadmium notifications corresponded to cephalopods and products thereof. Notified products were largely withdrawn from the markets according to arsenic (20.3%), lead (17.9%), and mercury (18.0%) notifications and re-dispatched because of cadmium (20.5%), chromium (42.1%), and nickel (49.5%) notifications. The target hazard quotient (THQ) values for mercury in swordfish, sharks, and tuna and cadmium in squid were all also below the threshold value of 1, implying that there is no significant risk for consumers. Overall, media coverage of RASFF alerts and actions may raise awareness of heavy metal contamination among the general public and industry professionals. The primary dietary advice of our study is to stay away from species with high mercury contents. Also, identifying the most dangerous heavy metals (HMs) and the most polluting products can help researchers prioritize their efforts in finding sustainable solutions for them.

2.
Ecotoxicol Environ Saf ; 200: 110732, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460049

RESUMO

This paper reports the role of exogenous glycine betaine (25 and 50 mM GB at a rate of 50 mL per plant) in enhancing NaCl-stress tolerance in common bean (Phaseolus vulgaris L.). Irrigating plants by simulated saline water, containing 0, 50 and 100 mM sodium chloride (NaCl), significantly reduced the growth dynamics, photosynthetic pigments (i.e., Chl a, Chl b, and carotenoids), membrane stability index (MSI), relative water content (RWC), and pod yield. While, malondialdehyde (MDA), endogenous proline, and glutathione contents, electrolyte leakage (EL), antioxidant defense system, and Na+ accumulation markedly increased upon exposure to NaCl-stress. However, the application of exogenous GB significantly improved salt tolerance of common bean as it increased the antioxidant defense including both enzymatic (i.e., peroxidase, superoxide dismutase, and catalase) and nonenzymatic (i.e., proline and glutathione) agents. Consequently, MSI, RWC, EL, and photosynthetic pigments have been improved recording significantly higher values than the control. Moreover, the pod yield increased by 29.8 and 59.4% when plants grown under 50 and 100 mM NaCl, respectively, were sprayed with 25 mM GB. Our results show that GB-induced slat tolerance in common bean plants mainly depends on the osmoregulation effect of GB and to a lesser extent on its antioxidant capacity. Foliar application of GB significantly reduced the accumulation of Na+ and at the same time induced K+ uptake maintaining a higher K+/Na+ ratio. Despite some changes in the activities of antioxidant enzymes induced by the application of GB, no consistent contribution in the salt tolerance could be cited in this study. Therefore, we suggest that salt tolerance is largely unrelated to the antioxidant defense ability of GB in common bean. While the potential role of GB in ameliorating salt tolerance is mainly due to the adjustment of ions uptake through limiting Na+ uptake and alternatively increasing K+ accumulation in plant tissues.


Assuntos
Betaína/farmacologia , Phaseolus/efeitos dos fármacos , Potássio/metabolismo , Tolerância ao Sal , Sódio/metabolismo , Antioxidantes/metabolismo , Transporte Biológico/efeitos dos fármacos , Catalase/metabolismo , Cátions , Glutationa/metabolismo , Malondialdeído/análise , Osmorregulação/efeitos dos fármacos , Peroxidase/metabolismo , Phaseolus/química , Phaseolus/enzimologia , Phaseolus/metabolismo , Fotossíntese/efeitos dos fármacos , Potássio/análise , Prolina/metabolismo , Sódio/análise , Superóxido Dismutase/metabolismo
3.
Ecotoxicol Environ Saf ; 180: 384-395, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31103858

RESUMO

The present study aimed at assessment of different application methods of Bacillus subtilis MF497446 to induce development of cowpea ensuring food safety under cadmium (Cd) stress. Also, isolation, plant growth promoting (PGP) traits and 16 S rRNA-based identification of Bacillus subtilis MF497446 is documented. Out of 24 Bacillus isolates (AS1-AS24), only four isolates (AS4, AS12, AS14 and AS22) showed greater Cd tolerance up to 18 mg L-1. The greatest PGP traits under Cd stress were displayed by Bacillus isolate (AS12); which, also, enhanced seedling elongation and vigor index of cowpea under Cd stress. Phylogenetic analysis, based on 16 S rRNA, confirmed that this promising Bacillus isolate (AS12) belongs to Bacillus subtilis and is referred to as B. subtilis MF497446. Treatment of inoculation+soaking for 90 min of cowpea seeds by B. subtilis MF497446 resulted in the best development of cowpea plants under Cd stress (up to 9 mg kg-1); as fresh and dry masses of cowpea increased from 6.80 to 1.54 to 12.35 and 2.59 g plant-1, respectively. Moreover, shoot and root lengths were 19.66 and 28.33 cm when cowpea seeds were treated by B. subtilis MF497446 (inoculation+soaking for 90 min) compared to 11.33 and 10.66 cm, respectively, for control (Cd stress only). Application of B. subtilis MF497446 (as inoculation+soaking for 90 min) reduced Cd accumulation and bioconcentration factor in cowpea plants by 29.2 and 28.9%, respectively, compared to control (Cd stress only). These results clearly reveal that applying of B. subtilis MF497446 to crops grown on Cd-contaminated soil enhances plant growth and eliminates (or at least diminishes) the risks to human health ensuring food safety.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Cádmio/análise , Inocuidade dos Alimentos , Poluentes do Solo/análise , Vigna/efeitos dos fármacos , Bacillus subtilis/isolamento & purificação , Biodegradação Ambiental , Cádmio/metabolismo , Rizosfera , Microbiologia do Solo , Poluentes do Solo/metabolismo , Vigna/crescimento & desenvolvimento , Vigna/metabolismo
4.
Sci Rep ; 14(1): 1704, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242963

RESUMO

Giant reed (Arundo donax L.) is one of the most well-studied perennial biomass crops because of its high productivity and potential to store carbon. Yet, little information on controlling weeds in giant reed plantations and their influences on the soil ecosystem is available. In the present study, three different weed control methods, i.e., intercropping (living mulch) with sweet clover (Melilotus officinalis L.), herbicide (glyphosate), and hoeing, were investigated in a 2-year giant reed farm. The intercropping presented significantly higher values (on average) of all the tested soil properties than herbicide and hoeing, except for the catalase activity and pH. The dehydrogenase, phosphatase, and urease activities in the soil under intercropping were higher than the herbicide by 75%, 65%, and 80% (on average), respectively. Also, the soil under intercropping had higher soil organic matter (SOM) and soil respiration than the herbicide by 20% and 25%, respectively. Intercropping also increased the content of N pools, i.e., NO3--N, NH4+-N, Org-N, and Total-N by 517%, 356%, 38%, and 137%, respectively, compared to herbicide. These findings illustrated that controlling weeds in biomass plantations through legume intercropping brings benefits not only to soil properties but also to biomass productivity.


Assuntos
Herbicidas , Solo , Solo/química , Ecossistema , Nitrogênio/química , Poaceae , Água
5.
Life (Basel) ; 13(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36836666

RESUMO

It is necessary to develop and deploy novel protein production to allow the establishment of a sustainable supply for both humans and animals, given the ongoing expansion of protein demand to meet the future needs of the increased world population and high living standards. In addition to plant seeds, green biomass from dedicated crops or green agricultural waste is also available as an alternative source to fulfill the protein and nutrient needs of humans and animals. The development of extraction and precipitation methods (such as microwave coagulation) for chloroplast and cytoplasmic proteins, which constitute the bulk of leaf protein, will allow the production of leaf protein concentrates (LPC) and protein isolates (LPI). Obtained LPC serves as a sustainable alternative source of animal-based protein besides being an important source of many vital phytochemicals, including vitamins and substances with nutritional and pharmacological effects. Along with it, the production of LPC, directly or indirectly, supports sustainability and circular economy concepts. However, the quantity and quality of LPC largely depend on several factors, including plant species, extraction and precipitation techniques, harvest time, and growing season. This paper provides an overview of the history of green biomass-derived protein from the early green fodder mill concept by Károly Ereky to the state-of-art of green-based protein utilization. It highlights potential approaches for enhancing LPC production, including dedicated plant species, associated extraction methods, selection of optimal technologies, and best combination approaches for improving leaf protein isolation.

6.
Foods ; 11(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010418

RESUMO

The main objective of this study was to increase the economic value of broccoli green agro-waste using three wet fractionation methods in the shadow of green biorefinery and the circular economy. Product candidates were obtained directly by using a mechanical press, and indirectly by using microwave coagulation or via lactic acid fermentation of green juice. The leaf protein concentrates (LPC) fractions displayed significantly higher dry matter content and crude protein content (34-39 m/m% on average) than the green juice fraction (27.4 m/m% on average), without considerable changes in the amino acids composition ratio. UHPLC-ESI-ORBITRAP-MS/MS analysis showed that kaemferol and quercetin are the most abundant flavonols, forming complexes with glycosides and hydroxycinnamic acids in green juice. Lacto-ermentation induced a considerable increase in the quantity of quercetin (48.75 µg·g-1 dry weight) and kaempferol aglycons (895.26 µg·g-1 dry weight) of LPC. In contrast, chlorogenic acid isomers and sulforaphane disappeared from LPC after lactic acid fermentation, while microwave treatment did not cause significant differences. These results confirm that both microwave treatment and lacto-fermentation coagulate and concentrate most of the soluble proteins. Also, these two processes affect the amount of valuable phytochemicals differently, so it should be considered when setting the goals.

7.
Plants (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201671

RESUMO

A pot experiment, under greenhouse conditions, was carried out aiming at investigating the agronomic biofortification of alfalfa (Medicago sativa L.) with Se and monitoring the Se uptake and accumulation dynamics within four consecutive harvests within the same growing season. Two ionic Se forms, i.e., sodium selenate (Se (VI)) and sodium selenite (Se (IV)), were applied once at a rate of 1, 10, and 50 mg kg-1 (added on Se basis), while 10 and 50 mg L-1 of a red elemental Se (red Se0) were used; all Se treatments were added as soil application. Application of Se (VI) at the rate of 50 mg kg-1 was toxic to alfalfa plants. The effect of Se forms on Se accumulation in alfalfa tissues, regardless of the applied Se concentration, follows: Se (VI) > Se (IV) > red Se0. The leaf, in general, possessed higher total Se content than the stem in all the treatments. The accumulation of Se in stem and leaf tissues showed a gradual decline between the harvests, especially for plants treated with either Se (VI) or Se (IV); however, the chemically synthesized red Se0 showed different results. The treatment of 10 mg kg-1 Se (VI) resulted in the highest total Se content in stem (202.5 and 98.0 µg g-1) and leaf (643.4 and 284.5 µg g-1) in the 1st and 2nd harvests, respectively. Similar tendency is reported for the Se (IV)-treated plants. Otherwise, the application of red Se0 resulted in a lower Se uptake; however, less fluctuation in total Se content between the four harvests was noticed compared to the ionic Se forms. The Se forms in stem and leaf of alfalfa extracted by water and subsequently by protease XIV enzyme were measured by strong anion exchange (SAX) HPLC-ICP-MS. The major Se forms in our samples were selenomethionine (SeMet) and Se (VI), while neither selenocysteine (SeCys) nor Se (IV) was detected. In water extract, however, Se (VI) was the major Se form, while SeMet was the predominant form in the enzyme extract. Yet, Se (VI) and SeMet contents declined within the harvests, except in stem of plants treated with 50 mg L-1 red Se0. The highest stem or leaf SeMet yield %, in all harvests, corresponded to the treatment of 50 mg L-1 red Se0. For instance, 63.6% (in stem) and 38.0% (in leaf) were calculated for SeMet yield % in the 4th harvest of plants treated with 50 mg L-1 red Se0. Our results provide information about uptake and accumulation dynamics of different ionic Se forms in case of multiple-harvested alfalfa, which, besides being a good model plant, is an important target plant species in green biorefining.

8.
Plants (Basel) ; 9(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674454

RESUMO

Jerusalem artichoke (JA) is widely known to have inulin-rich tubers. However, its fresh aerial biomass produces significant levels of leaf protein and economic bioactive phytochemicals. We have characterized leaf protein concentrate (JAPC) isolated from green biomass of three Jerusalem artichoke clones, Alba, Fuseau, and Kalevala, and its nutritional value for the human diet or animal feeding. The JAPC yield varied from 28.6 to 31.2 g DM kg-1 green biomass with an average total protein content of 33.3% on a dry mass basis. The qualitative analysis of the phytochemical composition of JAPC was performed by ultra-high performance liquid chromatography-electrospray ionization-Orbitrap/mass spectrometry analysis (UHPLC-ESI-ORBITRAP-MS/MS). Fifty-three phytochemicals were successfully identified in JAPC. In addition to the phenolic acids (especially mono- and di-hydroxycinnamic acid esters of quinic acids) several medically important hydroxylated methoxyflavones, i.e., dimethoxy-tetrahydroxyflavone, dihydroxy-methoxyflavone, hymenoxin, and nevadensin, were detected in the JAPC for the first time. Liquiritigenin, an estrogenic-like flavanone, was measured in the JAPC as well as butein and kukulkanin B, as chalcones. The results also showed high contents of the essential amino acids and polyunsaturated fatty acids (PUFAs; 66-68%) in JAPC. Linolenic acid represented 39-43% of the total lipid content; moreover, the ratio between ω-6 and ω-3 fatty acids in the JAPC was ~0.6:1. Comparing the JA clones, no major differences in phytochemicals, fatty acid, or amino acid compositions were observed. This paper confirms the economic and nutritional value of JAPC as it is not only an alternative plant protein source but also as a good source of biological valuable phytochemicals.

9.
Plant Physiol Biochem ; 139: 1-10, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30870715

RESUMO

The role of amorphous silica nanoparticles (SiNPs) in enhancing growth and yield of cucumber under water deficit and salinity stresses was assessed. A field experiment under greenhouse conditions was established using 4 different levels of SiNPs (100, 200, 300 and 400 mg kg-1) and 3 different watering regimes calculated based on crop evapotranspiration (ETc) (100, 85 and 70% of ETc). Electrical conductivity and sodium adsorption ratio of irrigation water were 1.7 dS m-1 and 4.63 respectively. The results revealed that SiNPs improved growth and productivity of cucumber regardless of quantity of supplied water; however, the greatest increase corresponded to irrigating cucumber at the rate of 85% of ETc. Applying SiNPs at rate of 200 mg kg-1 showed the greatest increase specially when cucumber plants received 85% of their ETc causing an increase of 20, 51 and 156% in plant height, chlorophyll and fruit yield, respectively, compared to untreated plants. These increases could be due to alerting nutrient uptake as SiNPs clearly increased contents of nitrogen (by 30%), potassium (by 52, 75 and 41% in root, stem and leaf, respectively) and silicon (by 51, 57, 8 and 78% in root, stem, leaf and fruit, respectively). Otherwise, same treatment reduced sodium uptake by 38, 77 and 38% in root, stem and leaf, respectively; consequently, potassium-sodium ratio increased by 149, 735 and 127% in root, stem and leaf, respectively. The significant role of SiNPs in mitigating water deficit and salinity stresses could be referred to high silicon content found in leaf which regulates water losses via transpiration. Also, high K+ content found in roots of cucumber helps plants to tolerate abiotic stresses as a result of maintaining ion homeostasis and regulating the osmotic balance as well as controlling stomatal opening which helps plants to adapt to salinity and water deficit stresses.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Nanopartículas , Dióxido de Silício/farmacologia , Produção Agrícola/métodos , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/metabolismo , Cucumis sativus/fisiologia , Desidratação , Relação Dose-Resposta a Droga , Germinação , Potássio/metabolismo , Estresse Salino , Plântula/crescimento & desenvolvimento , Sódio/metabolismo
10.
Plant Physiol Biochem ; 125: 164-171, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29471211

RESUMO

The current work was aimed to elucidate the role of engineered nanosilica (SiNPs) particles to mitigate the damaging impacts of Na+-derived salinity on cucumber (Cucumis sativus) Beit Alpha variety by conducting in vitro experiments applying various Na+ concentrations i.e. 0, 1000, 2000, 3000, 4000 and 5000 mg L-1. By treating seeds and seedlings, respectively, of cucumber with SiNPs (0, 100, 200 and 300 ppm) and subsequent determination some germination and vegetative parameters as well as chemical analysis of seedlings, we verified that SiNPs succeeded to alleviate the detrimental effects of high Na+ salinity by increasing germination parameters and vegetative growth of cucumber seedlings. Even as little as 100 ppm of N-Si results in considerable improvement of seed germination and seedlings growth of cucumber compared to the control, while 200 ppm was optimal among the doses tested. At 5000 mg Na+ L-1, applying SiNPs with 200 ppm increased final germination percentage by 101% over control, vigor index by 101%, germination rate index by 116%, germination index by 110%, fresh mass by 13%, K+/Na+ ratio by 77%, shoot dry mass by 384%, root dry mass by 304% and plant height by 70%. The results mentioned in this paper obviously outline the large practical relevance of SiNPs and imply that applying of SiNPs for cucumber seeds and seedlings under high Na+-derived salinity enhances germination and growth as a result for decreasing Na+ uptake and sequentially improves high K+/Na+ ratio.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Nanopartículas/química , Potássio/metabolismo , Dióxido de Silício , Sódio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia
11.
Environ Sci Pollut Res Int ; 25(31): 31368-31380, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30196460

RESUMO

The response of giant reed (Arundo donax L.) to selenium (Se), added as selenate, was studied. The development, stress response, uptake, translocation, and accumulation of Se were documented in three giant reed ecotypes STM (Hungary), BL (USA), and ESP (Spain), representing different climatic zones. Plantlets regenerated from sterile tissue cultures were grown under greenhouse conditions in sand supplemented with 0, 2.5, 5, and 10 mg Se kg-1 added as sodium selenate. Total Se content was measured in different plant parts using hydride generation atomic fluorescence spectroscopy. All plants developed normally in the 0-5.0 mg Se kg-1 concentration range regardless of ecotype, but no growth occurred at 10.0 mg Se kg-1. There were no signs of chlorosis or necrosis, and the photosynthetic machinery was not affected as evidenced by no marked differences in the structure of thylakoid membranes. There was no change in the maximum quantum yield of photosystem II (Fv/Fm ratio) in the three ecotypes under Se stress, except for a significant negative effect in the ESP ecotype in the 5.0 mg Se kg-1 treatment. Glutathione peroxidase (GPx) activity increased as the Se concentration increased in the growth medium. GPx activity was higher in the shoot system than the root system in all Se treatments. All ecotypes showed great capacity of take up, translocate and accumulate selenium in their stem and leaf. Relative Se accumulation is best described as leaf ˃˃ stem ˃ root. The ESP ecotype accumulated 1783 µg g-1 in leaf, followed by BL with 1769 µg g-1, and STM with 1606 µg g-1 in the 5.0 mg Se kg-1 treatment. All ecotypes showed high values of translocation and bioaccumulation factors, particularly the ESP ecotype (10.1 and 689, respectively, at the highest tolerated Se supplementation level). Based on these findings, Arundo donax has been identified as the first monocot hyperaccumulator of selenium, because Se concentration in the leaves of all three ecotypes, and also in the stem of the ESP ecotype, is higher than 0.1% (dry weight basis) under the conditions tested. Tolerance up to 5.0 mg Se kg-1 and the Se hyperaccumulation capacity make giant reed a promising tool for Se phytoremediation.


Assuntos
Biodegradação Ambiental , Poaceae/metabolismo , Ácido Selênico/toxicidade , Selênio/metabolismo , Biomassa , Ecótipo , Poaceae/efeitos dos fármacos , Ácido Selênico/metabolismo , Espectrometria de Fluorescência
12.
Environ Sci Pollut Res Int ; 24(27): 21917-21928, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780690

RESUMO

During the past 10 years, exploiting engineered nanoparticles in agricultural sector has been rapidly increased. Nanoparticles are used to increase the productivity of different crops particularly under biotic and abiotic stresses. This study aims to test the ability of nanosilica (NS) to ameliorate the detrimental impact of Na+ with different concentrations on the seed germination and the growth of common bean seedlings. Five doses of Na+ have been prepared from NaCl, i.e., 1000, 2000, 3000, 4000, and 5000 mg L-1, and distilled water was applied as a control. Seeds and seedlings were treated with three different NS concentrations (100, 200, and 300 mg L-1). The results proved that Na+ concentrations had detrimental effects on all measured parameters. However, treating seeds and seedlings with NS improved their growth and resulted in higher values for all measurements. For instance, the addition of 300 mg L-1 NS leads to an increase of the final germination percentage, vigor index, and germination speed for seeds irrigated with 5000 mg Na+ L-1 by 19.7, 80.7, and 22.6%, respectively. Although common bean seedlings could not grow at the highest level of Na+, fortification seedlings with NS helped them to grow well under 5000 mg L-1 of Na+. An increase of 11.1 and 23.1% has been measured for shoot and root lengths after treating seedlings with 300 mg L-1 NS under irrigation with 5000 mg Na+ L-1 solutions, and also at the same treatment, shoot and root dry masses are enhanced by 110.9 and 328.0%, respectively. These results proved the importance of using NS to relieve the detrimental effects of Na+-derived salinity. This finding could be reinforced by low Na content which was measured in plant tissues after treating seedlings with 300 mg L-1 of NS.


Assuntos
Germinação/efeitos dos fármacos , Nanopartículas/química , Phaseolus/efeitos dos fármacos , Dióxido de Silício/química , Cloreto de Sódio/toxicidade , Poluentes do Solo/toxicidade , Relação Dose-Resposta a Droga , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA