Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 593(7857): 147-151, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828301

RESUMO

Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.


Assuntos
Ácidos e Sais Biliares/metabolismo , Regulação da Expressão Gênica , Intestino Delgado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Linfócitos T/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Receptor Constitutivo de Androstano , Doença de Crohn/metabolismo , Feminino , Ileíte/metabolismo , Inflamação/metabolismo , Interleucina-10/biossíntese , Interleucina-10/genética , Intestino Delgado/citologia , Camundongos
2.
Cell Mol Gastroenterol Hepatol ; : 101392, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39179177

RESUMO

BACKGROUNDS & AIMS: Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (ie, ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells in vivo remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption in vivo would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools. METHODS: Using ex vivo mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/Slc10a2. RESULTS: Using these data, we calculated that the pool of BAs circulating through ileal tissue (ie, the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 mmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to ex vivo-cultured ileal explants. CONCLUSIONS: This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.

3.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405928

RESUMO

Bile acids (BAs) are gastrointestinal metabolites that serve dual functions in lipid absorption and cell signaling. BAs circulate actively between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with intestinal cells in vivo remain ill-defined. Through multi-site sampling of nearly 100 BA species in individual wild type mice, as well as mice lacking the ileal BA transporter, Asbt/Slc10a2, we calculate the ileal BA pool in fasting C57BL/6J mice to be ~0.3 µmoles/g. Asbt-mediated transport accounts for ~80% of this pool and amplifies size, whereas passive absorption explains the remaining ~20%, and generates diversity. Accordingly, ileal BA pools in mice lacking Asbt are ~5-fold smaller than in wild type controls, enriched in secondary BA species normally found in the colon, and elicit unique transcriptional responses in cultured ileal explants. This work quantitatively defines ileal BA pools in mice and reveals how BA dysmetabolism can impinge on intestinal physiology.

4.
Nat Commun ; 12(1): 76, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397953

RESUMO

Full development of IL-17 producing CD4+ T helper cells (TH17 cells) requires the transcriptional activity of both orphan nuclear receptors RORα and RORγt. However, RORα is considered functionally redundant to RORγt; therefore, the function and therapeutic value of RORα in TH17 cells is unclear. Here, using mouse models of autoimmune and chronic inflammation, we show that expression of RORα is required for TH17 cell pathogenicity. T-cell-specific deletion of RORα reduces the development of experimental autoimmune encephalomyelitis (EAE) and colitis. Reduced inflammation is associated with decreased TH17 cell development, lower expression of tissue-homing chemokine receptors and integrins, and increased frequencies of Foxp3+ T regulatory cells. Importantly, inhibition of RORα with a selective small molecule antagonist mostly phenocopies our genetic data, showing potent suppression of the in vivo development of both chronic/progressive and relapsing/remitting EAE, but with no effect on overall thymic cellularity. Furthermore, use of the RORα antagonist effectively inhibits human TH17 cell differentiation and memory cytokine secretion. Together, these data suggest that RORα functions independent of RORγt in programming TH17 pathogenicity and identifies RORα as a safer and more selective therapeutic target for the treatment of TH17-mediated autoimmunity.


Assuntos
Inflamação/imunologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Células Th17/imunologia , Animais , Autoimunidade/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Doença Crônica , Colo/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Células HEK293 , Humanos , Inflamação/genética , Camundongos Endogâmicos C57BL , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Tamanho do Órgão/efeitos dos fármacos , Índice de Gravidade de Doença , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiofenos/química , Tiofenos/farmacologia
5.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302378

RESUMO

Multidrug resistance-1 (MDR1) acts as a chemotherapeutic drug efflux pump in tumor cells, although its physiological functions remain enigmatic. Using a recently developed MDR1-knockin reporter allele (Abcb1aAME), we found that constitutive MDR1 expression among hematopoietic cells was observed in cytolytic lymphocytes-including CD8+ cytotoxic T lymphocytes (CTLs) and natural killer cells-and regulated by Runt-related (Runx) transcription factors. Whereas MDR1 was dispensable for naive CD8+ T cell development, it was required for both the normal accumulation of effector CTLs following acute viral infection and the protective function of memory CTLs following challenge with an intracellular bacterium. MDR1 acted early after naive CD8+ T cell activation to suppress oxidative stress, enforce survival, and safeguard mitochondrial function in nascent CTLs. These data highlight an important endogenous function of MDR1 in cell-mediated immune responses and suggest that ongoing efforts to intentionally inhibit MDR1 in cancer patients could be counterproductive.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linfócitos T Citotóxicos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Sobrevivência Celular , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Hematopoese , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitose , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA