Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 288(21): 14742-55, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23580649

RESUMO

The autosomal recessive mutation, sld, attenuates mucous cell expression in murine sublingual glands with corresponding effects on mucin 19 (Muc19). We conducted a systematic study including genetic mapping, sequencing, and functional analyses to elucidate a mutation to explain the sld phenotype in neonatal mice. Genetic mapping and gene expression analyses localized the sld mutation within the gene Muc19/Smgc, specifically attenuating Muc19 transcripts, and Muc19 knock-out mice mimic the sld phenotype in neonates. Muc19 transcription is unaffected in sld mice, whereas mRNA stability is markedly decreased. Decreased mRNA stability is not due to a defect in 3'-end processing nor to sequence differences in Muc19 transcripts. Comparative sequencing of the Muc19/Smgc gene identified four candidate intronic mutations within the Muc19 coding region. Minigene splicing assays revealed a novel splicing event in which insertion of two additional repeats within a CA repeat region of intron 53 of the sld genome enhances retention of intron 54, decreasing the levels of correctly spliced transcripts. Moreover, pateamine A, an inhibitor of nonsense-mediated mRNA decay, inhibits degradation of aberrant Muc19 transcripts. The mutation in intron 53 thus enhances aberrant splicing leading to degradation of aberrant transcripts and decreased Muc19 message stability, consistent with the sld phenotype. We propose a working model of the unique splicing event enhanced by the mutation, as well as putative explanations for the gradual but limited increase in Muc19 glycoprotein expression and its restricted localization to subpopulations of mucous cells in sld mice during postnatal gland development.


Assuntos
Íntrons/fisiologia , Modelos Biológicos , Mucinas/biossíntese , Mutação , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Glândula Sublingual/metabolismo , Processamento Alternativo/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Mucinas/genética , Fases de Leitura Aberta/fisiologia , RNA Mensageiro/genética , Glândula Sublingual/citologia , Glândula Sublingual/crescimento & desenvolvimento
2.
Nat Genet ; 33(2): 145-53, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12548288

RESUMO

Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Drosophila , Síndrome de Hermanski-Pudlak/genética , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Mutação/genética , Proteínas/genética , Complexo 3 de Proteínas Adaptadoras , Subunidades beta do Complexo de Proteínas Adaptadoras , Adulto , Sequência de Aminoácidos , Animais , Células COS , Pré-Escolar , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais de Bacteriófago P1/genética , Modelos Animais de Doenças , Feminino , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patologia , Humanos , Masculino , Melanossomas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Oligopeptídeos , Peptídeos/imunologia , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Proteínas Proto-Oncogênicas c-myc/imunologia , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção , Técnicas do Sistema de Duplo-Híbrido
3.
Nat Genet ; 35(1): 84-9, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12923531

RESUMO

Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules. In mice, at least 16 loci are associated with HPS, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to alpha- and beta-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9-11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Associadas à Distrofina , Síndrome de Hermanski-Pudlak/genética , Mutação , Animais , Células COS , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Disbindina , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lectinas , Substâncias Macromoleculares , Masculino , Melanossomas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fosfoproteínas/metabolismo , Ligação Proteica
4.
Genetics ; 214(3): 691-702, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879319

RESUMO

The azoxymethane model of colorectal cancer (CRC) was used to gain insights into the genetic heterogeneity of nonfamilial CRC. We observed significant differences in susceptibility parameters across 40 mouse inbred strains, with 6 new and 18 of 24 previously identified mouse CRC modifier alleles detected using genome-wide association analysis. Tumor incidence varied in F1 as well as intercrosses and backcrosses between resistant and susceptible strains. Analysis of inheritance patterns indicates that resistance to CRC development is inherited as a dominant characteristic genome-wide, and that susceptibility appears to occur in individuals lacking a large-effect, or sufficient numbers of small-effect, polygenic resistance alleles. Our results suggest a new polygenic model for inheritance of nonfamilial CRC, and that genetic studies in humans aimed at identifying individuals with elevated susceptibility should be pursued through the lens of absence of dominant resistance alleles rather than for the presence of susceptibility alleles.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Alelos , Animais , Azoximetano/toxicidade , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Heterogeneidade Genética , Hereditariedade , Humanos , Camundongos , Camundongos Endogâmicos/genética , Modelos Genéticos
5.
Dev Dyn ; 234(4): 1034-45, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16247769

RESUMO

Different causes, such as maternal diabetes, cloning by nuclear transfer, interspecific hybridization, and deletion of some genes such as Esx1, Ipl, or Cdkn1c, may underlie placental overgrowth. In a previous study, we carried out comparative gene expression analysis in three models of placental hyperplasias, cloning, interspecies hybridization (IHPD), and Esx1 deletion. This study identified a large number of genes that exhibited differential expression between normal and enlarged placentas; however, it remained unclear how altered expression of any specific gene was related to any specific placental phenotype. In the present study, we focused on two genes, Car2 and Ncam1, which both exhibited increased expression in interspecies and cloned hyperplastic placentas. Apart from a detailed expression analysis of both genes during normal murine placentation, we also assessed morphology of placentas that were null for Car2 or Ncam1. Finally, we attempted to rescue placental hyperplasia in a congenic model of IHPD by decreasing transcript levels of Car2 or Ncam1. In situ analysis showed that both genes are expressed mainly in the spongiotrophoblast, however, expression patterns exhibited significant variability during development. Contrary to expectations, homozygous deletion of either Car2 or Ncam1 did not result in placental phenotypes. However, expression analysis of Car3 and Ncam2, which can take over the function of Car2 and Ncam1, respectively, indicated a possible rescue mechanism, as Car3 and Ncam2 were expressed in spongiotrophoblast of Car2 and Ncam1 mutant placentas. On the other hand, downregulation of either Car2 or Ncam1 did not rescue any of the placental phenotypes of AT24 placentas, a congenic model for interspecies hybrid placentas. This strongly suggested that altered expression of Car2 and Ncam1 is a downstream event in placental hyperplasia.


Assuntos
Antígeno CD56/metabolismo , Anidrase Carbônica II/metabolismo , Regulação da Expressão Gênica , Fenótipo , Doenças Placentárias/genética , Animais , Antígeno CD56/genética , Anidrase Carbônica II/genética , Primers do DNA , Feminino , Hibridização In Situ , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Doenças Placentárias/patologia , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
6.
Mamm Genome ; 15(9): 704-10, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15389318

RESUMO

Male F1 hybrids between inbred strains and Mus macedonicus have very small testes and are sterile. Cytological analysis of testes shows very few meioses. To determine the genetic basis for this sterility, (C57BL/6J x Mus macedonics) F1 females were mated to males from C57BL/10J. In about half the male progeny no meiosis I was observed. About half of the animals that progressed through meiosis I showed other indications of low fertility and the balance appeared fertile. QTL analysis of the progeny suggested that loci on proximal Chrs 17 and X were involved in the sterility and a locus on Chr X in variation of body weight. There is also evidence that X//Y dissociation of the pseudo-autosomal region occurs. The QTLs on Chrs X and 17 together account for about 37% of the variance for testis weight. Congenic lines B.MAC-X(1-38), and B.MAC-17(1-23) have been constructed using a modified speed congenic approach. Testis tubules from B.MAC-X(1-38) are narrow and vacuolated. They contain only Sertoli cells and mitotically dividing spermatogonia. Very occasionally a meiotic metaphase can be observed, but no sperm are produced. Homozygous males from B.MAC-17(1-23) are sterile, producing sperm heads but no complete sperm.


Assuntos
Infertilidade Masculina/genética , Locos de Características Quantitativas/genética , Testículo/anormalidades , Animais , Cruzamentos Genéticos , Feminino , Histocitoquímica , Endogamia , Infertilidade Masculina/patologia , Masculino , Meiose/genética , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Tamanho do Órgão , Aberrações dos Cromossomos Sexuais , Cromossomos Sexuais/genética , Testículo/anatomia & histologia , Testículo/patologia
7.
Br J Haematol ; 117(2): 414-23, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11972527

RESUMO

The mutant gunmetal mouse exhibits reduced rates of platelet synthesis, abnormalities of platelet alpha and dense granules and hypopigmentation. Several of these features resemble those of human alpha/delta platelet storage pool disease, grey platelet syndrome and Hermansky-Pudlak syndrome. Gunmetal mice have reduced levels of Rab geranylgeranyltransferase (RabGGTase), which adds lipophilic prenyl groups to the carboxyl terminus of Rab proteins. The degree of prenylation and the subcellular distribution of several Rab proteins were evaluated in mutant platelets, melanocytes and other tissues. Significant deficits in prenylation and membrane binding of most Rabs were observed in platelets and melanocytes. In contrast, minimal alterations in Rab prenylation were apparent in several other gunmetal tissues despite the fact that RabGGTase activity was equally diminished in these tissues. The mutant tissue-specific effects are probably due to increased concentrations of Rab proteins in platelets and melanocytes. These experiments show that Rab proteins are differentially sensitive to levels of RabGGTase activity and that normal platelet synthesis, platelet organelle function and normal pigmentation are highly sensitive to the degree of prenylation and membrane association of Rab proteins. Further, the tissue-specific effects of the gunmetal mutation suggest that RabGGTase is a potential target for therapy of thrombocytosis.


Assuntos
Plaquetas/metabolismo , Melanócitos/metabolismo , Deficiência do Pool Plaquetário/genética , Prenilação de Proteína , Proteínas rab de Ligação ao GTP/genética , Alquil e Aril Transferases/metabolismo , Animais , Membrana Celular/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Melanócitos/ultraestrutura , Camundongos , Camundongos Mutantes , Microscopia Eletrônica , Organelas/metabolismo , Deficiência do Pool Plaquetário/metabolismo , Deficiência do Pool Plaquetário/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA