Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(9): E1162-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811464

RESUMO

The ability to coordinate the timing of motor protein activation lies at the center of a wide range of cellular motile processes including endocytosis, cell division, and cancer cell migration. We show that calcium dramatically alters the conformation and activity of the myosin-VI motor implicated in pivotal steps of these processes. We resolved the change in motor conformation and in structural flexibility using single particle analysis of electron microscopic data and identified interacting domains using fluorescence spectroscopy. We discovered that calcium binding to calmodulin increases the binding affinity by a factor of 2,500 for a bipartite binding site on myosin-VI. The ability of calcium-calmodulin to seek out and bridge between binding site components directs a major rearrangement of the motor from a compact dormant state into a cargo binding primed state that is nonmotile. The lack of motility at high calcium is due to calmodulin switching to a higher affinity binding site, which leaves the original IQ-motif exposed, thereby destabilizing the lever arm. The return to low calcium can either restabilize the lever arm, required for translocating the cargo-bound motors toward the center of the cell, or refold the cargo-free motors into an inactive state ready for the next cellular calcium flux.


Assuntos
Cálcio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Sítios de Ligação , Calmodulina/metabolismo , Células Cultivadas , Galinhas , Espectrometria de Fluorescência
2.
Proc Natl Acad Sci U S A ; 111(2): E227-36, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379364

RESUMO

Myosin XXI is the only myosin expressed in Leishmania parasites. Although it is assumed that it performs a variety of motile functions, the motor's oligomerization states, cargo-binding, and motility are unknown. Here we show that binding of a single calmodulin causes the motor to adopt a monomeric state and to move actin filaments. In the absence of calmodulin, nonmotile dimers that cross-linked actin filaments were formed. Unexpectedly, structural analysis revealed that the dimerization domains include the calmodulin-binding neck region, essential for the generation of force and movement in myosins. Furthermore, monomeric myosin XXI bound to mixed liposomes, whereas the dimers did not. Lipid-binding sections overlapped with the dimerization domains, but also included a phox-homology domain in the converter region. We propose a mechanism of myosin regulation where dimerization, motility, and lipid binding are regulated by calmodulin. Although myosin-XXI dimers might act as nonmotile actin cross-linkers, the calmodulin-binding monomers might transport lipid cargo in the parasite.


Assuntos
Calmodulina/metabolismo , Leishmania/metabolismo , Movimento , Miosinas/química , Miosinas/metabolismo , Fosfolipídeos/metabolismo , Conformação Proteica , Área Sob a Curva , Baculoviridae , Dimerização , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Microscopia Eletrônica de Transmissão , Oligonucleotídeos/genética , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA