RESUMO
OBJECTIVES: The purposes of this study were to localize monocyte chemoattractant protein-1-induced protein-1 (MCPIP-1) and its suppressor mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT-1) in gingival tissues and to profile their protein expression levels in relation to the clinical inflammation, Porphyromonas gingivalis colonization, and interleukin (IL)-8 levels. MATERIALS AND METHODS: Study samples were collected from two independent study populations: (1) Gingival tissues were collected from eight periodontally healthy individuals and eight periodontitis patients to localize MCPIP-1 and MALT-1 immunohistochemically, and (2) forty-one gingival tissue samples with marginal, mild, or moderate to severe inflammation were collected from 20 periodontitis patients to determine MCPIP-1 and MALT-1 levels using immunoblots, P. gingivalis levels with qPCR, P. gingivalis gingipain activities with fluorogenic substrates, and IL-8 levels with multiplex technique. RESULTS: MCPIP-1 was detectable in the epithelium and in connective tissue, being especially prominent around the blood vessel walls in healthy periodontal tissues. MALT-1 was observed at all layers of gingival epithelium and especially around the accumulated inflammatory cells in connective tissue. No difference in gingival tissue MCPIP-1 and MALT-1 levels was observed in relation to the severity of gingival inflammation. MALT-1 levels were elevated (p = 0.023) with the increase in tissue P. gingivalis levels, and there was an association between MALT-1 and IL-8 levels (ß = 0.054, p = 0.001). CONCLUSIONS: Interactions of MALT-1 levels with gingival tissue P. gingivalis counts and IL-8 levels suggest that activation of MALT-1 can take part in P. gingivalis-regulated host immune responses. CLINICAL RELEVANCE: Pharmacological targeting the crosstalk between immune response and MCPIP-1/MALT-1 may have benefits in periodontal treatment.
Assuntos
Periodontite , Humanos , Gengiva , Inflamação/patologia , Interleucina-8/metabolismo , Periodontite/metabolismo , Porphyromonas gingivalisRESUMO
BACKGROUND: The aim of this study was to evaluate oral bacteria- and interleukin (IL)-1ß-induced protein and mRNA expression profiles of monocyte chemoattractant protein-1-induced protein (MCPIP)-1 and mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 in human gingival keratinocyte monolayers and organotypic oral mucosal models. METHODS: Human gingival keratinocyte (HMK) monolayers were incubated with Porphyromonas gingivalis, Fusobacterium nucleatum, P. gingivalis lipopolysaccharide (LPS) and IL-1ß. The protein levels of MCPIP-1 and MALT-1 were examined by immunoblots and mRNA levels by qPCR. MCPIP-1 and MALT-1 protein expression levels were also analyzed immunohistochemically using an organotypic oral mucosal model. One-way analysis of variance followed by Tukey correction was used in statistical analyses. RESULTS: In keratinocyte monolayers, MCPIP-1 protein expression was suppressed by F. nucleatum and MALT-1 protein expression was suppressed by F. nucleatum, P. gingivalis LPS and IL-1ß. P. gingivalis seemed to degrade MCPIP-1 and MALT-1 at all tested time points and degradation was inhibited when P. gingivalis was heat-killed. MCPIP-1 mRNA levels were increased by P. gingivalis, F. nucleatum, and IL-1ß, however, no changes were observed in MALT-1 mRNA levels. CONCLUSION: Gingival keratinocyte MCPIP-1 and MALT-1 mRNA and protein expression responses are regulated by infection and inflammatory mediators. These findings suggest that periodontitis-associated bacteria-induced modifications in MCPIP-1 and MALT-1 responses can be a part of periodontal disease pathogenesis.
Assuntos
Lipopolissacarídeos , Linfoma de Zona Marginal Tipo Células B , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Quimiocina CCL2/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Linfoma de Zona Marginal Tipo Células B/metabolismo , Gengiva/metabolismo , Porphyromonas gingivalis/metabolismo , Fusobacterium nucleatum/fisiologia , Queratinócitos/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Constant exposure of human gingival fibroblasts (HGFs) to oral pathogens trigger selective immune responses. Recently, the activation of immune response to cyclic dinucleotides (CDNs) via STING has come to the forefront. Reports show that other proteins outside the STING-TBK1-IRF3 axis respond to CDNs but a global view of impacted proteome in diverse cells is lacking. HGFs are constantly exposed to bacterial-derived cyclic-di-adenosine monophosphate (c-di-AMP) and cyclic-di-guanosine monophosphate (c-di-GMP). AIM: To understand the response of HGFs to bacterial-derived CDNs, we carried out a global proteomics analysis of HGFs treated with c-di-AMP or c-di-GMP. METHODS: The expression levels of several proteins modulated by CDNs were examined. RESULTS: Interferon signaling proteins such as Ubiquitin-like protein ISG15 (ISG15), Interferon-induced GTP-binding protein Mx1 (MX1), Interferon-induced protein with tetratricopeptide repeats (IFIT) 1 (IFIT1), and (IFIT3) were significantly upregulated. Interestingly, other pathways not fully characterized to be regulated by CDNs, such as necroptosis signaling, iron homeostasis signaling, protein ubiquitination, EIF2 signaling, sumoylation and nucleotide excision repair pathways were also modulated by the bacterial-derived CDNs. CONCLUSION: This study has added to the increasing appreciation that beyond the regulation of cytokine production via STING, cyclic dinucleotides also broadly affect many critical processes in human cells.
RESUMO
Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides-including c-di-GMP, c-di-AMP, and cGAMP-of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms "STING", "TBK 1", "IRF3", and "cGAS"-alone, or together with "periodontitis". Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.
RESUMO
Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on other periodontal cell types, such as gingival fibroblasts, remain to be clarified. The present aim was to examine the independent and combined effects of these cyclic dinucleotides and LPS on interleukin (IL) and matrix metalloproteinase (MMP) response of HGFs. The cells were incubated with c-di-GMP and c-di-AMP, either in the presence or absence of Porphyromonas gingivalis LPS, for 2 h and 24 h. The levels of IL-8, -10, and -34, and MMP-1, -2, and -3 secreted were measured by the Luminex technique. LPS alone or together with cyclic dinucleotides elevated IL-8 levels. IL-10 levels were significantly increased in the presence of c-di-GMP and LPS after 2 h but disappeared after 24 h of incubation. Concurrent treatment of c-di-AMP and LPS elevated MMP-1 levels, whereas c-di-GMP with LPS suppressed MMP-2 levels but increased MMP-3 levels. To conclude, we produce evidence that cyclic dinucleotides interact with LPS-mediated early response of gingival fibroblasts, while late cellular response is mainly regulated by LPS.
RESUMO
BACKGROUND: Cyclic dinucleotides (cyclic di-guanosine monophosphate (c-di-GMP) and cyclic di-adenosine monophosphate (c-di-AMP)) and lipopolysaccharides (LPS) are pathogen-associated molecular patterns (PAMPs). Individual impacts of PAMPs on immune system have been evaluated, but simultaneous actions of multiple PAMPs have not been studied. OBJECTIVE: Examination the effects of cyclic dinucleotides and Porphyromonas gingivalis LPS on gingival epithelial cytokine response. METHODS: Human gingival keratinocytes (HMK) were incubated with 1, 10, and 100 µM concentrations of c-di-GMP and c-di-AMP, either in the presence or absence of P. gingivalis LPS. Intra- and extracellular levels of interleukin (IL)-1ß, IL-8, IL-1Ra, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF), were measured using the Luminex technique. RESULTS: LPS decreased extracellular IL-8 levels, while the presence of c-di-AMP inhibited this effect. Incubating HMK cells with c-di-AMP (alone or with LPS) elevated the extracellular level of MCP-1. Extracellular VEGF level increased when cells were incubated with LPS and c-di-GMP together, or with c-di-AMP alone. LPS and c-di-AMP suppressed intracellular IL-1ß levels. The c-di-AMP elevated intracellular levels of IL-1Ra. CONCLUSION: c-di-AMP and, to a lesser extent, c-di-GMP regulate keratinocyte cytokine response, either as an aggregator or as a suppressor of LPS, depending on the cytokine type.