Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Biomed Online ; 49(2): 103981, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38870625

RESUMO

RESEARCH QUESTION: What is the involvement of pigment epithelium-derived factor (PEDF), expressed in granulosa cells, in folliculogenesis? DESIGN: mRNA expression of PEDF and other key factors [Cyp19, anti-Müllerian hormone receptor (AMHR) and vascular endothelial growth factor (VEGF)] in mice follicles was examined in order to typify the expression of PEDF in growing follicles and in human primary granulosa cells (hpGC), and to follow the interplay between PEDF and the other main players in folliculogenesis: FSH and AMH. RESULTS: mRNA expression of PEDF increased through folliculogenesis, although the pattern differed from that of the other examined genes, affecting the follicular angiogenic and oxidative balance. In hpGC, prolonged exposure to FSH stimulated the up-regulation of PEDF mRNA. Furthermore, a negative correlation between AMH and PEDF was observed: AMH stimulation reduced the expression of PEDF mRNA and PEDF stimulation reduced the expression of AMHR mRNA. CONCLUSIONS: Folliculogenesis, an intricate process that requires close dialogue between the oocyte and its supporting granulosa cells, is mediated by various endocrine and paracrine factors. The current findings suggest that PEDF, expressed in granulosa cells, is a pro-folliculogenesis player that interacts with FSH and AMH in the process of follicular growth. However, the mechanism of this process is yet to be determined.

2.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142276

RESUMO

Reproductive aging is characterized by a decline in ovarian function and in oocytes' quantity and quality. Pigment epithelium-derived factor (PEDF), a pivotal player in ovarian angiogenic and oxidative balance, was evaluated for its involvement in reproductive aging. Our work examines the initial stage of reproductive aging in women and mice, and the involvement of PEDF in the process. Granulosa cells from reproductively-aged (RA) women and mice (36-44 years old and 9-10 months old, respectively) indicated an increase in the level of PEDF mRNA (qPCR), with yet unchanged levels of AMH and FSHR mRNAs. However, the PEDF protein level in individual women showed an intra-cellular decrease (ELISA), along with a decrease in the corresponding follicular fluid, which reflects the secreted fraction of the protein. The in vitro maturation (IVM) rate in the oocytes of RA mice was lower compared with the oocytes of young mice, demonstrated by a reduced polar body extrusion (PBE) rate. The supplementation of PEDF improved the hampered PBE rate, manifested by a higher number of energetically-competent oocytes (ATP concentration and mtDNA copy number of individual oocytes). Our findings propose PEDF as an early marker of reproductive aging, and a possible therapeutic in vitro agent that could enhance the number of good-quality oocytes in older IVF patients.


Assuntos
Oócitos , Ovário , Serpinas/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/genética , Animais , DNA Mitocondrial/metabolismo , Proteínas do Olho , Feminino , Humanos , Camundongos , Fatores de Crescimento Neural , Oócitos/metabolismo , Ovário/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA