Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 200(1-2): 23-35, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36123584

RESUMO

The use of stable isotopes of carbon (δ13C) and nitrogen (δ15N) from feces and breath offers potential as non-destructive tools to assess diets and nutrition. How stable isotope values derived from breath and feces compare with those from commonly used tissues, such as blood fractions and liver, remains uncertain, including understanding the metabolic routing of dietary nutrients. Here, we measured δ13C and δ15N from feces and δ13C of breath from captive Red-necked Stints (Calidris ruficollis) and 26 species of wild-caught migratory shorebirds (n = 259 individuals) and compared them against isotopic values from blood and feathers. For captive birds fed either cereal- or fish-based diets, differences in δ13C between feces and lipid-free diet were small, - 0.2 ± 0.5‰ and 0.1 ± 0.3‰, respectively, and differences in δ15N, - 0.7 ± 0.5‰ and - 0.5 ± 0.5‰, respectively. Hence, δ13C and δ15N values from feces can serve as proxies for ingested proteinaceous tissues and non-soluble carbohydrates because isotopic discrimination can be considered negligible. Stable isotope values in plasma and feces were strongly correlated in wild-caught shorebirds, indicating feces can be used to infer assimilated macronutrients. Breath δ13C was 1.6 ± 0.8‰ to 5.6 ± 1.2‰ lower than bulk food sources, and breath C derived from lipids was estimated at 47.5% (cereal) to 96.1% (fish), likely underlining the importance of dietary lipids for metabolism. The findings validate the use of stable isotope values of feces and breath in isotopic assays to better understand the dietary needs of shorebirds.


Assuntos
Carbono , Dieta , Animais , Carboidratos , Isótopos de Carbono/metabolismo , Dieta/veterinária , Fezes , Peixes/metabolismo , Isótopos de Nitrogênio/metabolismo
2.
J Chromatogr A ; 1693: 463870, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36848732

RESUMO

The critical importance of mono- and polyunsaturated fatty acids (FAs) in a variety of biological functions, including animal nutrition and as an environmental stress monitor, is well recognized. However, while methods exist for monitoring of fatty acids, few are specific either to the profile of a microphytobenthos matrix or practical in application to multiple, diverse intertidal biofilm sample sets. In the current study, a sensitive liquid chromatography (LC) quadrupole time of flight mass spectrometry (QTOF) method was developed for the quantitative analysis of 31 FAs specific to intertidal biofilm, a thin mucilaginous layer of microalgae, bacteria, and other organisms on the surface of coastal mudflats, which provide a rich source of FAs for migratory birds. Preliminary screening of diverse biofilm samples collected from shorebird feeding grounds highlighted eight saturated (SFA), seven monounsaturated (MUFA), and sixteen polyunsaturated FAs (PUFA) that were selected for analysis. Improved method detection limits in the range 0.3-2.6 ngmL-1 were achieved, excepting for stearic acid at 10.6 ngmL-1. These excellent results were obtained without use of complex sample extraction and clean-up procedures undertaken by other published methods. An alkaline matrix of dilute aqueous ammonium hydroxide with methanol was shown to be selective for extraction and stability of the more hydrophilic fatty acid components. The direct injection method showed excellent precision and accuracy both during validation and application to hundreds of real-world intertidal biofilm samples from the Fraser River estuary (British Columbia, Canada) and other areas of the region frequented by shoreline birds.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Animais , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Espectrometria de Massas/métodos , Metanol , Cromatografia Líquida/métodos
3.
Ecol Lett ; 15(4): 347-56, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22304245

RESUMO

Food webs are comprised of a network of trophic interactions and are essential to elucidating ecosystem processes and functions. However, the presence of unknown, but critical networks hampers understanding of complex and dynamic food webs in nature. Here, we empirically demonstrate a missing link, both critical and variable, by revealing that direct predator-prey relationships between shorebirds and biofilm are widespread and mediated by multiple ecological and evolutionary determinants. Food source mixing models and energy budget estimates indicate that the strength of the missing linkage is dependent on predator traits (body mass and foraging action rate) and the environment that determines food density. Morphological analyses, showing that smaller bodied species possess more developed feeding apparatus to consume biofilm, suggest that the linkage is also phylogenetically dependent and affords a compelling re-interpretation of niche differentiation. We contend that exploring missing links is a necessity for revealing true network structure and dynamics.


Assuntos
Biofilmes , Charadriiformes/fisiologia , Comportamento Alimentar , Cadeia Alimentar , Animais , Bico/anatomia & histologia , Tamanho Corporal , Charadriiformes/classificação , Dieta , Metabolismo Energético , Isótopos/química , Modelos Biológicos , Filogenia , Comportamento Predatório , Língua/anatomia & histologia , Língua/ultraestrutura
4.
Conserv Physiol ; 10(1): coac006, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35198213

RESUMO

Shorebirds use key migratory stopover habitats in spring and fall where body proteins are replenished and lipids stored as fuel for the remaining journey. The Fraser River estuary, British Columbia, Canada, is a critical spring stopover site for hundreds of thousands of migrating western sandpiper, Calidris mauri, and dunlin, Calidris alpina. Intertidal biofilm in spring is an important nutritional source for western sandpiper, with previous isotopic research predicting 45-59% of total diet and 50% of total energy needs. However, these studies relied on isotopic mixing models that did not consider metabolic routing of key dietary macromolecules. Complexity arises due to the mixed macromolecular composition of biofilm that is difficult to characterize isotopically. We expanded on these earlier findings by considering a protein pathway from diet to the body protein pool represented by liver tissue, using a Bayesian mixing model based on δ 13C and δ 15N. We used δ 13C measurements of adipose tissue and breath CO2 to provide an estimate of the carbohydrate and protein δ 13C values of microphytobenthos and used these derived values to better inform the isotopic mixing models. Our results reinforce earlier estimates of the importance of biofilm to staging shorebirds in predicting that assimilated nutrients from biofilm contribute ~35% of the protein budgets for staging western sandpipers (n = 13) and dunlin (n = 11) and at least 41% of the energy budget of western sandpiper (n = 69). Dunlin's ingestion of biofilm appeared higher than anticipated given their expected reliance on invertebrate prey compared to western sandpiper, a biofilm specialist. Isotopic analyses of bulk tissues that consider metabolic routing and that make use of breath CO2 and adipose lipid assays can provide new insights into avian physiology. We advocate further isotopic research to better understand biofilm use by migratory shorebirds in general and as a critical requirement for more effective conservation.

5.
Ecology ; 89(3): 599-606, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18459323

RESUMO

We show that a higher vertebrate can graze surficial intertidal biofilm, previously only considered a food source for rasping invertebrates and a few specialized fish. Using evidence from video recordings, stomach contents, and stable isotopes, we describe for the first time the grazing behavior of Western Sandpipers (Calidris mauri) and estimate that biofilm accounts for 45-59% of their total diet or 50% of their daily energy budget. Our finding of shorebirds as herbivores extends the trophic range of shorebirds to primary consumers and potential competitors with grazing invertebrates. Also, given individual grazing rates estimated at seven times body mass per day and flock sizes into the tens of thousands, biofilm-feeding shorebirds could have major impacts on sediment dynamics. We stress the importance of the physical and biological processes maintaining biofilm to shorebird and intertidal conservation.


Assuntos
Ração Animal , Biofilmes , Charadriiformes/fisiologia , Ecossistema , Fenômenos Fisiológicos da Nutrição Animal , Animais , Charadriiformes/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Comportamento Alimentar , Cadeia Alimentar , Densidade Demográfica , Dinâmica Populacional , Gravação em Vídeo
6.
Ecology ; 88(3): 781-91, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17503605

RESUMO

We report that a latitudinal cline in intertidal food distribution is associated with the nonbreeding distribution of the Western Sandpiper (Calidris mauri). This novel result is the first to demonstrate a clear relationship between patterns of differential nonbreeding distribution and food availability for any shorebird species. Within each age class and sex, longer-billed Western Sandpipers winter further south. Moreover, females, the longer-billed sex, tend to winter south of males. Thus, both inter- and intra-sexual clines in bill morphology result in an overall gradient of increasing bill length from north to south. Longer-billed birds are able to extract prey that are buried more deeply in the sediment; therefore, we predicted shifts in the vertical distribution of food resources to coincide with the clines in bill morphology across the nonbreeding range. We tested our prediction by measuring biofilm density and the vertical distribution of macrofaunal invertebrates at six nonbreeding sites. Although no latitudinal trend was observed for biofilm, the vertical distribution of invertebrates was consistent with our prediction and revealed that the greatest relative abundance of surface prey occurred at northern nonbreeding sites and declined with decreasing latitude. We discuss the potential implications of these findings in the context of competing evolutionary hypotheses of differential migration and bill dimorphism in shorebirds.


Assuntos
Migração Animal , Charadriiformes/fisiologia , Demografia , Fatores Etários , Animais , Bico/anatomia & histologia , Biofilmes , California , Charadriiformes/anatomia & histologia , Comportamento Alimentar/fisiologia , Feminino , Geografia , Invertebrados , Modelos Logísticos , Masculino , México , Modelos Teóricos , Panamá , Densidade Demográfica , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA