Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 1957-1969, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801146

RESUMO

Pheochromocytoma (PCC) is a neuroendocrine tumor that produces and secretes catecholamine from either the adrenal medulla or extra-adrenal locations. MicroRNAs (miRNAs, miR) can be used as biomarkers to detect cancer or the return of a previously treated disease. Blood-borne miRNAs might be envisioned as noninvasive markers of malignancy or prognosis, and new studies demonstrate that microRNAs are released in body fluids as well as tissues. MiRNAs have the potential to be therapeutic targets, which would greatly increase the restricted therapy options for adrenal tumors. This article aims to consolidate and synthesize the most recent studies on miRNAs in PCC, discussing their potential clinical utility as diagnostic and prognostic biomarkers while also addressing their limitations.


Assuntos
Neoplasias das Glândulas Suprarrenais , MicroRNAs , Feocromocitoma , Humanos , Feocromocitoma/diagnóstico , Feocromocitoma/genética , Feocromocitoma/patologia , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/patologia , Prognóstico , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica
2.
Life Sci ; 315: 121382, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639051

RESUMO

In recent decades, obesity has extensively emerged to the level of pandemics. It's significantly associated with serious co-morbidities that could decrease life quality and even life expectancy. Obesity has several determinants, such as age, sex, endocrine, and genetic factors. The miRNAs have emerged as genetic factors affecting obesity. The miRNAs are small noncoding nucleic acids that can modify gene expression and hence, control biological processes. The miRNAs can greatly affect many biological processes in obesity, such as adipogenesis, lipid metabolism, and homeostasis. As a result, the entry of miRNAs in obesity therapeutic approaches has been strongly advised as miRNAs mimics, inhibitors, and stimulators. Hence, this review aims to point out a summarized and updated overview of miRNAs and their roles in obesity and its included processes, such as adipogenesis and lipid metabolism. Besides, we also review recent applications of miRNAs as a treatment approach for obesity.


Assuntos
Adipogenia , MicroRNAs , Obesidade , Humanos , Adipogenia/genética , Adipogenia/fisiologia , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo
3.
Pathol Res Pract ; 242: 154316, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682282

RESUMO

Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Masculino , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/diagnóstico , Prognóstico , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica/genética
4.
Pathol Res Pract ; 243: 154371, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36791561

RESUMO

Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/ß-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- ß, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.


Assuntos
Carcinoma Papilar , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/patologia , Radioisótopos do Iodo , Fosfatidilinositol 3-Quinases/metabolismo , Carcinoma Papilar/genética , Processos Neoplásicos , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral
5.
Pathol Res Pract ; 243: 154363, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764011

RESUMO

Chronic lymphocytic leukemia (CLL) accounts for the vast majority of cases of leukemia. Patients of advanced age are more likely to develop the condition, which has a highly varied clinical course. Consideration of illness features and preceding treatment sequence, as well as patient preferences and comorbidities, is necessary for selecting the appropriate treatment for the appropriate patient. Therefore, there is an urgent need for novel biomarkers with high sensitivity and specificity to detect CLL early, monitor CLL patients, select the treatment responders, and reduce ineffective treatment, unwanted side effects, and unnecessary expenses. In both homeostasis and illness, microRNAs (miRNAs/miRs) play a vital role as master regulators of gene expression and, by extension, protein expression. MiRNAs typically reduce the stability of mRNAs, including those encoding genes involved in tumorigenesis processes as cell cycle regulation, inflammation, stress response, angiogenesis, differentiation, apoptosis, and invasion. Due to their unique properties, miRNAs are rapidly being exploited as accurate biomarkers for illness detection, and medicines based on miRNA targets are finding widespread application in clinical practice. Accordingly, the current review serves as a quick primer on CLL and the biogenesis of miRNAs. In addition to providing a brief overview of the miRNAs whose function in the progression of CLL has been established by recent in vitro or in vivo research through articulating the influence of these miRNAs on a wide variety of cellular functions, including increased proliferative potential; support for angiogenesis; cell cycle aberration; evasion of apoptosis; promotion of metastasis; and reduced sensitivity to specific treatments.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Humanos , MicroRNAs/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores , Transdução de Sinais
6.
Life Sci ; 314: 121321, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574943

RESUMO

Rheumatoid arthritis (RA) is a severe autoimmune inflammation that mostly affects the joints. It's a multifactorial disease. Its clinical picture depends on genetic and epigenetic factors such as miRNAs. The miRNAs are small noncoding molecules that are able to negatively or positively modulate their target gene expression. In RA, miRNAs are linked to its pathogenesis. They disrupt immunity balance by controlling granulocytes, triggering the release of several proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α, finally leading to synovium hyperplasia and inflammation. Besides, they also may trigger activation of some pathways as nuclear factor kappa-ß disrupts the balance between osteoclast and osteoblast activity, leading to increased bone destruction. Moreover, miRNAs are also applied with efficiency in RA diagnosis and prognosis. Besides the significant association between miRNAs and RA response to treatment, they are also applied as a choice for treatment based on their effects on the immune system and inflammatory cytokines. Hence, the review aims to present an updated overview of miRNAs, their biogenesis, implications in RA pathogenesis, and finally, the role of miRNAs in RA treatment.


Assuntos
Artrite Reumatoide , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Inflamação/patologia , Citocinas/genética
7.
Int J Biol Macromol ; 224: 1541-1565, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328268

RESUMO

Breast cancer (BC) is the most common cancer in women and poses a serious threat to their health. Despite familiarity with factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected previous aspects affecting BC progression and treatment in the last decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting the translation of the target mRNA. miRNAs play a crucial role in BC pathogenesis by promoting cancer stem cell (CSCs) proliferation, postponing apoptosis, continuing the cell cycle, and endorsing invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important BC-related molecular pathways such as the PI3K/AKT/mTOR signaling pathway, the Wnt/ß-catenin system, JAK/STAT signaling pathway, and the MAPK signaling pathway. Moreover, miRNAs affect the treatment response of BC to chemo and radiotherapy. Consequently, this review aims to provide an acquainted summary of oncomiRs and tumor suppressor (TS) miRNAs and their potential role in BC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , Neoplasias da Mama/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Genes Supressores de Tumor , Regulação Neoplásica da Expressão Gênica
8.
J Biomol Struct Dyn ; : 1-20, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261471

RESUMO

Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.

9.
Pathol Res Pract ; 246: 154511, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178618

RESUMO

High mortality and morbidity rates and variable clinical behavior are hallmarks of glioblastoma (GBM), the most common and aggressive primary malignant brain tumor. Patients with GBM often have a dismal outlook, even after undergoing surgery, postoperative radiation, and chemotherapy, which has fueled the search for specific targets to provide new insights into the development of contemporary therapies. The ability of microRNAs (miRNAs/miRs) to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, cell cycle, apoptosis, invasion, angiogenesis, stem cell behavior and chemo- and radiotherapy resistance makes them promising candidates as prognostic biomarkers and therapeutic targets or factors to advance GBM therapeutics. Hence, this review is like a crash course in GBM and how miRNAs related to GBM. Here, we will outline the miRNAs whose role in the development of GBM has been established by recent in vitro or in vivo research. Moreover, we will provide a summary of the state of knowledge regarding oncomiRs and tumor suppressor (TS) miRNAs in relation to GBM with an emphasis on their potential applications as prognostic biomarkers and therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , MicroRNAs/genética , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Transdução de Sinais/genética , Proliferação de Células , Biomarcadores , Regulação Neoplásica da Expressão Gênica
10.
Pathol Res Pract ; 244: 154424, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989843

RESUMO

Melanoma is the sixth most frequent malignancy. It represents 1.7% of all cancer cases worldwide. Many risk factors are associated with melanoma including ultraviolet radiation skin phenotype, Pigmented Nevi, Pesticides, and genetic and epigenetic factors. Of the main epigenetic factors affecting melanoma are microribonucleic acids (miRNAs). They are short nucleic acid chains that have the potential to prevent the expression of a number of target genes. They could target a number of genes related to melanoma initiation, stemness, angiogenesis, apoptosis, proliferation, and potential resistance to treatment. Additionally, they can control several melanoma signaling pathways, including P53, WNT/-catenin, JAK/STAT, PI3K/AKT/mTOR axis, TGF- ß, and EGFR. MiRNAs also play a role in the resistance of melanoma to essential treatment regimens. The stability and abundance of miRNAs might be important factors enhancing the use of miRNAs as markers of prognosis, diagnosis, stemness, survival, and metastasis in melanoma patients.


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Raios Ultravioleta , Fosfatidilinositol 3-Quinases/metabolismo , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Cutâneas/genética , Regulação Neoplásica da Expressão Gênica
11.
Pathol Res Pract ; 245: 154442, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37031532

RESUMO

Osteosarcoma (OS) is one of the most common bone cancers that constantly affects children, teenagers, and young adults. Numerous epigenetic elements, such as miRNAs, have been shown to influence OS features like progression, initiation, angiogenesis, and treatment resistance. The expression of numerous genes implicated in OS pathogenesis might be regulated by miRNAs. This effect is ascribed to miRNAs' roles in the invasion, angiogenesis, metastasis, proliferation, cell cycle, and apoptosis. Important OS-related mechanistic networks like the WNT/b-catenin signaling, PTEN/AKT/mTOR axis, and KRAS mutations are also affected by miRNAs. In addition to pathophysiology, miRNAs may influence how the OS reacts to therapies like radiotherapy and chemotherapy. With a focus on how miRNAs affect OS signaling pathways, this review seeks to show how miRNAs and OS are related.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Adolescente , Criança , Adulto Jovem , Humanos , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células , Osteossarcoma/patologia , Via de Sinalização Wnt/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética
12.
Pathol Res Pract ; 245: 154437, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030167

RESUMO

Cholangiocarcinoma (CCA), the second most frequent liver cancer after hepatocellular carcinoma, has been rising worldwide in recent epidemiological research. This neoplasia's pathogenesis is poorly understood. Yet, recent advances have illuminated the molecular processes of cholangiocyte malignancy and growth. Late diagnosis, ineffective therapy, and resistance to standard treatments contribute to this malignancy's poor prognosis. So, to develop efficient preventative and therapy methods, the molecular pathways that cause this cancer must be better understood. MicroRNAs (miRNAs) are non-coding ribonucleic acids (ncRNAs) that influence gene expression. Biliary carcinogenesis involves abnormally expressed miRNAs that act as oncogenes or tumor suppressors (TSs). The miRNAs regulate multiple gene networks and are involved in cancer hallmarks like reprogramming of cellular metabolism, sustained proliferative signaling, evasion of growth suppressors, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, and avoidance of immune destruction. In addition, numerous ongoing clinical trials are demonstrating the efficacy of therapeutic strategies based on miRNAs as powerful anticancer agents. Here, we will update the research on CCA-related miRNAs and explain their regulation involved in the molecular pathophysiology of this malignancy. Eventually, we will disclose their potential as clinical biomarkers and therapeutic tools in CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Virulência , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Colangiocarcinoma/patologia , Transdução de Sinais/genética , Neoplasias Hepáticas/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/terapia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Regulação Neoplásica da Expressão Gênica/genética
13.
Pathol Res Pract ; 244: 154411, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921547

RESUMO

Endometrial cancer (EC) is the 2nd common cancer in females after breast cancer. Besides, it's the most common among gynecological cancers. Several epigenetic factors such as miRNAs have been reported to affect EC aspects including initiation, progression, angiogenesis, and resistance to therapy. miRNAs could regulate the expression of various genes involved in EC pathogenesis. This effect is attributed to miRNAs' effects in proliferation, apoptosis, cell cycle, angiogenesis, invasion, and metastasis. miRNAs also influence crucial EC-related mechanistic pathways such as JAK/STAT axis, EGFR, TGF-ß signaling, and P53. Beside pathogenesis, miRNAs also have the potential to affect EC response to treatments including radio and chemotherapy. Thus, this review aims to illustrate the link between miRNAs and EC; focusing on the effects of miRNAs on EC signaling pathways.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/terapia , Neoplasias do Endométrio/patologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética
14.
Life Sci ; 322: 121667, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023952

RESUMO

Gastric cancer (GC) is 4th in incidence and mortality rates globally. Several genetic and epigenetic factors, including microRNAs (miRNAs), affect its initiation and progression. miRNAs are short chains of nucleic acids that can regulate several cellular processes by controlling their gene expression. So, dysregulation of miRNAs expressions is associated with GC initiation, progression, invasion capacity, apoptosis evasions, angiogenesis, promotion and EMT enhancement. Of important pathways in GC and controlled by miRNAs are Wnt/ß-catenin signaling, HMGA2/mTOR/P-gp, PI3K/AKT/c-Myc, VEGFR and TGFb signaling. Hence, this review was conducted to review an updated view of the role of miRNAs in GC pathogenesis and their modulatory effects on responses to different GC treatment modalities.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Via de Sinalização Wnt/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
15.
Neurosci Biobehav Rev ; 150: 105195, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100161

RESUMO

The link between the gut microbiome and health has recently garnered considerable interest in its employment for medicinal purposes. Since the early microbiota exhibits more flexibility compared to that of adults, there is a considerable possibility that altering it will have significant consequences on human development. Like genetics, the human microbiota can be passed from mother to child. This provides information on early microbiota acquisition, future development, and prospective chances for intervention. The succession and acquisition of early-life microbiota, modifications of the maternal microbiota during pregnancy, delivery, and infancy, and new efforts to understand maternal-infant microbiota transmission are discussed in this article. We also examine the shaping of mother-to-infant microbial transmission, and we then explore possible paths for future research to advance our knowledge in this area.


Assuntos
Microbioma Gastrointestinal , Gravidez , Adulto , Criança , Lactente , Humanos , Feminino , Mães , Transmissão Vertical de Doenças Infecciosas , Encéfalo
16.
Pathol Res Pract ; 245: 154457, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37058745

RESUMO

Head and neck cancers (HNCs) are a group of heterogeneous tumors formed most frequently from epithelial cells of the larynx, lips, oropharynx, nasopharynx, and mouth. Numerous epigenetic components, including miRNAs, have been demonstrated to have an impact on HNCs characteristics like progression, angiogenesis, initiation, and resistance to therapeutic interventions. The miRNAs may control the production of numerous genes linked to HNCs pathogenesis. The roles that miRNAs play in angiogenesis, invasion, metastasis, cell cycle, proliferation, and apoptosis are responsible for this impact. The miRNAs also have an impact on crucial HNCs-related mechanistic networks like the WNT/ß-catenin signaling, PTEN/Akt/mTOR pathway, TGFß, and KRAS mutations. miRNAs may affect how the HNCs respond to treatments like radiation and chemotherapy in addition to pathophysiology. This review aims to demonstrate the relationship between miRNAs and HNCs with a particular emphasis on how miRNAs impact HNCs signaling networks.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
17.
Pathol Res Pract ; 246: 154510, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167812

RESUMO

Laryngeal cancer (LC)is the malignancy of the larynx (voice box). The majority of LC are squamous cell carcinomas. Many risk factors were reported to be associated with LC as tobacco use, obesity, alcohol intake, human papillomavirus (HPV) infection, and asbestos exposure. Besides, epigenetics as non-coding nucleic acids also have a great role in LC. miRNAs are short nucleic acid molecules that can modulate multiple cellular processes by regulating the expression of their genes. Therefore, LC progression, apoptosis evasions, initiation, EMT, and angiogenesis are associated with dysregulated miRNA expressions. miRNAs also could have some vital signaling pathways such as mTOR/P-gp, Wnt/-catenin signaling, JAK/STAT, KRAS, and EGF. Besides, miRNAs also have a role in the modulation of LC response to different therapeutic modalities. In this review, we have provided a comprehensive and updated overview highlighting the microRNAs biogenesis, general biological functions, regulatory mechanisms, and signaling dysfunction in LC carcinogenesis, in addition to their clinical potential for LC diagnosis, prognosis, and chemotherapeutics response implications.


Assuntos
Neoplasias Laríngeas , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias Laríngeas/genética , Resistencia a Medicamentos Antineoplásicos , Carcinogênese/genética , Via de Sinalização Wnt , Regulação Neoplásica da Expressão Gênica
18.
Pathol Res Pract ; 246: 154529, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37196470

RESUMO

Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-ß signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias Esofágicas/patologia , Via de Sinalização Wnt/genética , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica
19.
Pathol Res Pract ; 247: 154584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267724

RESUMO

Salivary gland cancer (SGC) is immensely heterogeneous, both in terms of its physical manifestation and its aggressiveness. Developing a novel diagnostic and prognostic detection method based on the noninvasive profiling of microribonucleic acids (miRs) could be a goal for the clinical management of these specific malignancies, sparing the patients' valuable time. miRs are promising candidates as prognostic biomarkers and therapeutic targets or factors that can advance the therapy of SGC due to their ability to posttranscriptionally regulate the expression of various genes involved in cell proliferation, differentiation, cell cycle, apoptosis, invasion, and angiogenesis. Depending on their biological function, many miRs may contribute to the development of SGC. Therefore, this article serves as an accelerated study guide for SGC and the biogenesis of miRs. Here, we shall list the miRs whose function in SGC pathogenesis has recently been determined with an emphasis on their potential applications as therapeutic targets. We will also offer a synopsis of the current state of knowledge about oncogenic and tumor suppressor miRs in relation to SGC.


Assuntos
MicroRNAs , Neoplasias das Glândulas Salivares , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias das Glândulas Salivares/patologia , Genes Supressores de Tumor , Prognóstico , Transdução de Sinais/genética
20.
Pathol Res Pract ; 248: 154590, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295259

RESUMO

Cancer of the salivary glands is one of the five major types of head and neck cancer. Due to radioresistance and a strong propensity for metastasis, the survival rate for nonresectable malignant tumors is dismal. Hence, more research is needed on salivary cancer's pathophysiology, particularly at the molecular level. The microRNAs (miRNAs) are a type of noncoding RNA that controls as many as 30% of all genes that code for proteins at the posttranscriptional level. Signature miRNA expression profiles have been established in several cancer types, suggesting a role for miRNAs in the incidence and progression of human malignancies. Salivary cancer tissues were shown to have significantly aberrant levels of miRNAs compared to normal salivary gland tissues, supporting the hypothesis that miRNAs play a crucial role in the carcinogenesis of salivary gland cancer (SGC). Besides, several SGC research articles reported potential biomarkers and therapeutic targets for the miRNA-based treatment of this malignancy. In this review, we will explore the regulatory impact of miRNAs on the processes underlying the molecular pathology of SGC and provide an up-to-date summary of the literature on miRNAs that impacted this malignancy. We will eventually share information about their possible use as diagnostic, prognostic, and therapeutic biomarkers in SGC.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias das Glândulas Salivares , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Neoplasias de Cabeça e Pescoço/patologia , Resistência a Medicamentos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA