Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166379

RESUMO

Recently, surface engineering of the cell membrane with biomaterials has attracted great attention for various biomedical applications. In this study, we investigated the possibility of modulating cell cycle progression using alginate and gelatin-based hydrogel sheaths with a thickness of ∼1 µm. The hydrogel sheath was formed on cell surfaces through cross-linking catalyzed by horseradish peroxidase immobilized on the cell surface. The hydrogel sheath did not decrease the viability (>95% during 2 days of culture) of the human cervical carcinoma cell line (HeLa) expressing the fluorescent ubiquitination-based cell cycle indicator 2 (HeLa/Fucci2). Coating the HeLa/Fucci2 cells with the hydrogel sheath resulted in a cell cycle arrest in the G2/M phase, which can be caused by the reduced F-actin formation. As a result of this cell cycle arrest, an inhibition of cell growth was observed in the HeLa/Fucci2 cells. Taken together, our results demonstrate that the hydrogel sheath coating on the cell surface is a feasible approach to modulating cell cycle progression.

2.
Soft Matter ; 19(31): 5880-5887, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439099

RESUMO

Cell sheets have immense potential for medical and pharmaceutical applications including tissue regeneration, drug testing, and disease modelling. In this study, composite hydrogels were prepared from a mixture of phenolated hyaluronic acid (HA-Ph) and gelatin (Gelatin-Ph), with a controlled degree of polymer crosslinking and degradation, to fabricate muscle cell sheets from myoblasts. These hydrogels were obtained via hydrogen peroxide (H2O2)-mediated crosslinking catalysed by horseradish peroxidase (HRP) and peroxide-mediated cleavage of the polymer chains. The degrees of crosslinking and degradation were modulated by altering the exposure time to air containing H2O2. The results showed that exposing a solution of 2% w/v HA-Ph, 0.75% w/v Gelatin-Ph, and 1 unit mL-1 HRP to air with 16 ppm H2O2 for 60 min yielded a stiffer hydrogel (7.16 kPa Young's modulus) than exposure times of 15 min (0.46 kPa) and 120 min (3.98 kPa). Moreover, mouse myoblast C2C12 cells cultured on a stiff hydrogel and induced to undergo myogenic differentiation formed longer and higher-density myotubes than those on softer hydrogels. The cell sheets were readily detached within 5 min by immersing the HA-Ph/Gelatin-Ph hydrogels covered with a monolayer of cells in a medium containing hyaluronidase. Our findings demonstrate that composite hydrogels with properties tuned by controlling the exposure time to H2O2, show great promise as platforms for muscle cell sheet fabrication.


Assuntos
Gelatina , Peróxido de Hidrogênio , Camundongos , Animais , Peróxido de Hidrogênio/química , Gelatina/química , Ácido Hialurônico/química , Hidrogéis/química , Peroxidase do Rábano Silvestre/química , Células Musculares/metabolismo , Polímeros
3.
Biomolecules ; 14(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786011

RESUMO

The development of hydrogels that allow vascular endothelial cells to form capillary-like networks is critical for advancing tissue engineering and drug discovery. In this study, we developed hydrogels composed of phenolated hyaluronic acid (HA-Ph) with an average molecular weight of 490-159 kDa via sonication in an aqueous solution. These hydrogels were synthesized by the horseradish peroxidase-catalyzed crosslinking of phenol moieties in the presence of hydrogen peroxide and phenolated gelatin. The sonication-degraded HA-Ph (198 kDa) significantly enhanced the migration ability of human umbilical vein endothelial cells (HUVECs) on cell culture plates when added to the medium compared to the original HA-Ph (490 kDa) and less-degraded HA-Ph (312-399 kDa). In addition, HUVECs cultured on these hydrogels formed networks that did not occur on hydrogels made from the original HA-Ph. CD44 expression and PI3K gene expression, both markers related to angiogenesis, were 3.5- and 1.8-fold higher, respectively, in cells cultured on sonication-degraded HA-Ph hydrogels than in those cultured on hydrogels comprising the original HA-Ph. These results highlight the potential of hydrogels containing sonication-degraded HA-Ph for tissue engineering and drug-screening applications involving human vascular endothelial cells.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Receptores de Hialuronatos , Ácido Hialurônico , Hidrogéis , Neovascularização Fisiológica , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores de Hialuronatos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Ondas Ultrassônicas
4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35345, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902433

RESUMO

Adeno-associated viral (AAV) vectors play a significant role in gene therapy, yet the typical delivery methods, like systemic and local AAV injections, often lead to unintended off-target distribution and tissue damage due to injection. In this study, we propose a localized delivery approach for AAV vectors utilizing electrospun gelatin nanofiber mats, which are cross-linked with glutaraldehyde. The AAV vectors, which encoded a green fluorescent protein (GFP), were loaded onto the mats by immersing them in a solution containing the vectors. The amount of AAV vector loaded onto the mats increased as the vector concentration in the solution increased. The loaded AAV vector was steadily released into the cell culture medium over 3 days. The mats incubated for 3 days also showed the ability to transduce into the cells cultured on them. We evaluated the effectiveness of this delivery system by attaching the mats to mouse livers. GFP expression was visible on the surface of the liver beneath the attached mats, but not in areas in direct contact with the mats. These findings suggest that the attachment of AAV vector-loaded electrospun gelatin nanofiber mats to a target site present a promising solution for localized gene delivery while reducing off-target distribution.


Assuntos
Gelatina , Nanofibras , Camundongos , Animais , Técnicas de Transferência de Genes
5.
Adv Healthc Mater ; 13(17): e2303787, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684108

RESUMO

In vitro network formation by endothelial cells serves as a fundamental model for studies aimed at understanding angiogenesis. The morphogenesis of these cells to form a network is intricately regulated by the mechanical and biochemical properties of the extracellular matrix. Here the effects of modulating these properties in hydrogels derived from phenolated hyaluronic acid (HA-Ph) and phenolated gelatin (Gelatin-Ph) are presented. Visible-light irradiation in the presence of tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate and sodium persulfate induces the crosslinking of these polymers, thereby forming a hydrogel and degrading HA-Ph. Human vascular endothelial cells form networks on the hydrogel prepared by visible-light irradiation for 45 min (42 W cm-2 at 450 nm) but not on the hydrogels prepared by irradiation for 15, 30, or 60 min. The irradiation time-dependent degradation of HA-Ph and the changes in the mechanical stiffness of the hydrogels, coupled with the expressions of RhoA and ß-actin genes and CD44 receptors in the cells, reveal that the network formation is synergistically influenced by the hydrogel stiffness and HA-Ph degradation. These findings highlight the potential of tailoring HA-based hydrogel properties to modulate human vascular endothelial cell responses, which is critical for advancing their application in vascular tissue engineering.


Assuntos
Ácido Hialurônico , Hidrogéis , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Gelatina/química , Luz , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Receptores de Hialuronatos/metabolismo , Actinas/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Carbohydr Polym ; 316: 121026, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321724

RESUMO

Herein, we report the hydrogelation of sugar beet pectin (SBP) via visible light-mediated photocrosslinking and its applications in extrusion-based 3D bioprinting. Rapid hydrogelation (<15 s) was achieved by applying 405 nm visible light to an SBP solution in the presence of tris(bipyridine)ruthenium(II) chloride hexahydrate ([Ru(bpy)3]2+) and sodium persulfate (SPS). The mechanical properties of the hydrogel could be tuned by controlling the visible light irradiation time and concentrations of SBP, [Ru(bpy)3]2+, and SPS. High-fidelity 3D hydrogel constructs were fabricated by extruding inks containing 3.0 wt% SBP, 1.0 mM [Ru(bpy)3]2+, and 1.0 mM SPS. Human hepatoblastoma (HepG2) cells encapsulated in SBP hydrogels remained viable and metabolically active after 14 d of culture. Overall, this study demonstrates the feasibility of applying SBP and a visible light-mediated photocrosslinking system to the 3D bioprinting of cell-laden constructs for tissue engineering applications.


Assuntos
Beta vulgaris , Bioimpressão , Humanos , Pectinas , Hidrogéis , Luz , Açúcares
7.
Polymers (Basel) ; 14(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36433161

RESUMO

The study of the capillary-like network formation of human umbilical vein endothelial cells (HUVECs) in vitro is important for understanding the factors that promote or inhibit angiogenesis. Here, we report the behavior of HUVECs on the composite hydrogels containing hyaluronic acid (HA) and gelatin with different degrees of degradation, inducing the different physicochemical properties of the hydrogels. The hydrogels were obtained through horseradish peroxidase (HRP)-catalyzed hydrogelation consuming hydrogen peroxide (H2O2, 16 ppm) supplied from the air, and the degradation degree was tuned by altering the exposure time to the air. The HUVECs on the composite hydrogel with intermediate stiffness (1.2 kPa) obtained through 120 min of the exposure were more elongated than those on the soft (0.4 kPa) and the stiff (2.4 kPa) composite hydrogels obtained through 15 min and 60 min of the exposure, respectively. In addition, HUVECs formed a capillary-like network only on the stiff composite hydrogel although those on the hydrogels with comparable stiffness but containing gelatin alone or alginate instead of HA did not form the network. These results show that the HA/gelatin composite hydrogels obtained through the H2O2-mediated crosslinking and degradation could be a tool for studies using HUVECs to understand the promotion and inhibition of angiogenesis.

8.
Gels ; 8(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35735731

RESUMO

Engineering skeletal muscle tissue in vitro is important to study the mechanism of myogenesis, which is crucial for regenerating muscle cells. The physicochemical properties of the cellular microenvironment are known to govern various cell behaviours. Yet, most studies utilised synthetic materials to model the extracellular matrix that suffers from cytotoxicity to the cells. We have previously reported that the physicochemical property of hydrogels obtained from horseradish peroxidase (HRP)-catalysed cross-linking could be controlled by a simple adjustment to the exposure time to air containing H2O2. In this study, we evaluated the influence of physicochemical properties dynamics in the gelatin possessing phenol groups (Gelatin-Ph) hydrogel to regulate the myogenesis in vitro. We controlled the Young's modulus of the Gelatin-Ph hydrogel by tuning the air containing 16 ppm H2O2 exposure time for 15-60 min. Additionally, prolonged exposure to air containing H2O2 also induced Gelatin-Ph degradation. Myoblasts showed higher adhesion and myotube formation on stiff hydrogel (3.53 kPa) fabricated through 30 min of exposure to air containing H2O2 compared to those on softer hydrogel (0.77-2.79 kPa) fabricated through 15, 45, and 60 min of the exposure. These results demonstrate that the myogenesis can be tuned by changes in the physicochemical properties of Gelatin-Ph hydrogel mediated by H2O2.

9.
Cells ; 11(5)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269503

RESUMO

The cell cycle is known to be regulated by features such as the mechanical properties of the surrounding environment and interaction of cells with the adhering substrates. Here, we investigated the possibility of regulating cell-cycle progression of the cells on gelatin/hyaluronic acid composite hydrogels obtained through hydrogen peroxide (H2O2)-mediated cross-linking and degradation of the polymers by varying the exposure time to H2O2 contained in the air. The stiffness of the hydrogel varied with the exposure time. Human cervical cancer cells (HeLa) and mouse mammary gland epithelial cells (NMuMG) expressing cell-cycle reporter Fucci2 showed the exposure-time-dependent different cell-cycle progressions on the hydrogels. Although HeLa/Fucci2 cells cultured on the soft hydrogel (Young's modulus: 0.20 and 0.40 kPa) obtained through 15 min and 120 min of the H2O2 exposure showed a G2/M-phase arrest, NMuMG cells showed a G1-phase arrest. Additionally, the cell-cycle progression of NMuMG cells was not only governed by the hydrogel stiffness, but also by the low-molecular-weight HA resulting from H2O2-mediated degradation. These results indicate that H2O2-mediated cross-linking and degradation of gelatin/hyaluronic acid composite hydrogel could be used to control the cell adhesion and cell-cycle progression.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Adesivos , Animais , Gelatina/química , Ácido Hialurônico/química , Hidrogéis/química , Peróxido de Hidrogênio/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA