Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843128

RESUMO

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


Assuntos
Adutos de DNA , DNA , Animais , Feminino , Humanos , Masculino , Ratos , Cromatografia Líquida/métodos , DNA/química , Adutos de DNA/genética , Roedores , Espectrometria de Massas em Tandem/métodos
2.
J Am Heart Assoc ; 13(13): e033155, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934864

RESUMO

BACKGROUND: Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS: Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 µM), LOM612 (FOXO relocator, 5 µM), AS1842856 (FOXO inhibitor, 1 µM), or RCM-1 (FOXM1 inhibitor, 1 µM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS: We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.


Assuntos
Diferenciação Celular , Proteína Forkhead Box M1 , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Transdução de Sinais , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética
3.
Sci Adv ; 9(10): eade8513, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36888704

RESUMO

Clinical translation of stem cell therapies for heart disease requires electrical integration of transplanted cardiomyocytes. Generation of electrically matured human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is critical for electrical integration. Here, we found that hiPSC-derived endothelial cells (hiPSC-ECs) promoted the expression of selected maturation markers in hiPSC-CMs. Using tissue-embedded stretchable mesh nanoelectronics, we achieved a long-term stable map of human three-dimensional (3D) cardiac microtissue electrical activity. The results revealed that hiPSC-ECs accelerated the electrical maturation of hiPSC-CMs in 3D cardiac microtissues. Machine learning-based pseudotime trajectory inference of cardiomyocyte electrical signals further revealed the electrical phenotypic transition path during development. Guided by the electrical recording data, single-cell RNA sequencing identified that hiPSC-ECs promoted cardiomyocyte subpopulations with a more mature phenotype, and multiple ligand-receptor interactions were up-regulated between hiPSC-ECs and hiPSC-CMs, revealing a coordinated multifactorial mechanism of hiPSC-CM electrical maturation. Collectively, these findings show that hiPSC-ECs drive hiPSC-CM electrical maturation via multiple intercellular pathways.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Humanos , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Eletricidade , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA