Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770977

RESUMO

This paper reports the synthesis of a new nitrogen-doped porous bio-graphene (NPBG) with a specific biomorphic structure, using Pistacia lentiscus as a natural carbon source containing nitrogen that also acts as a bio-template. The obtained NPBG demonstrated the unique feature of doped nitrogen with a 3D nanoporous structure. Next, a WO3/N-doped porous bio-graphene nanocomposite (WO3/NPBG-NC) was synthesized, and the products were characterized using XPS, SEM, TEM, FT-IR, EDX, XRD, and Raman analyses. The presence of nitrogen doped in the structure of the bio-graphene (BG) was confirmed to be pyridinic-N and pyrrolic-N with N1 peaks at 398.3 eV and 400.5 eV, respectively. The photocatalytic degradation of the anionic azo dyes and drugs was investigated, and the results indicated that the obtained NPBG with a high surface area (151.98 m2/g), unique electronic properties, and modified surface improved the adsorption and photocatalytic properties in combination with WO3 nanoparticles (WO3-NPs) as an effective visible-light-driven photocatalyst. The synthesized WO3/NPBG-NC with a surface area of 226.92 m2/g displayed lower bandgap and higher electron transfer compared with blank WO3-NPs, leading to an increase in the photocatalytic performance through the enhancement of the separation of charge and a reduction in the recombination rate. At the optimum conditions of 0.015 g of the nanocomposite, a contact time of 15 min, and 100 mg/L of dyes, the removal percentages were 100%, 99.8%, and 98% for methyl red (MR), Congo red (CR), and methyl orange (MO), respectively. In the case of the drugs, 99% and 87% of tetracycline and acetaminophen, respectively, at a concentration of 10 mg/L, were removed after 20 min.


Assuntos
Grafite/metabolismo , Luz , Nanopartículas/química , Óxidos/química , Pistacia/química , Tungstênio/química , Catálise , Grafite/química , Nanopartículas/metabolismo , Óxidos/metabolismo , Tamanho da Partícula , Processos Fotoquímicos , Pistacia/metabolismo , Porosidade , Propriedades de Superfície , Tungstênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA