Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(11)2019 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181833

RESUMO

The NO2 response in the range of 200 ppb to 1 ppm of a chemoresistive WS2-decorated rGO sensor has been investigated at operating temperatures of 25 °C and 50 °C in dry and humid air (40% RH) under dark and Purple Blue (PB) light conditions (λ = 430 nm). Few-layers WS2, exfoliated by ball milling and sonication technique, with average dimensions of 200 nm, have been mixed with rGO flakes (average dimension 700 nm) to yield WS2-decorated rGO, deposited on Si3N4 substrates, provided with platinum (30 µm gap distance) finger-type electrodes. TEM analysis showed the formation of homogeneous and well-dispersed WS2 flakes distributed over a thin, continuous and uniform underlying layer of interconnected rGO flakes. XPS and STEM revealed a partial oxidation of WS2 flakes leading to the formation of 18% amorphous WO3 over the WS2 flakes. PB-light irradiation and mild heating of the sensor at 50 °C substantially enhanced the baseline recovery yielding improved adsorption/desorption rates, with detection limit of 400 ppb NO2 and reproducible gas responses. Cross sensitivity tests with humid air interfering vapor highlighted a negligible influence of water vapor on the NO2 response. A charge carrier mechanism between WS2 and rGO is proposed and discussed to explain the overall NO2 and H2O response of the WS2-rGO hybrids.

2.
Nanomaterials (Basel) ; 9(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554152

RESUMO

WS2 exfoliated by a combined ball milling and sonication technique to produce few-layer WS2 is characterized and assembled as chemo-resistive NO2, H2 and humidity sensors. Microstructural analyses reveal flakes with average dimensions of 110 nm, "aspect ratio" of lateral dimension to the thickness of 27. Due to spontaneous oxidation of exfoliated WS2 to amorphous WO3, films have been pre-annealed at 180 °C to stabilize WO3 content at ≈58%, as determined by X-ray Photoelectron Spectroscopy (XPS), Raman and grazing incidence X-ray Diffraction (XRD) techniques. Microstructural analysis repeated after one-year conditioning highlighted that amorphous WO3 concentration is stable, attesting the validity of the pre-annealing procedure. WS2 films were NO2, H2 and humidity tested at 150 °C operating Temperature (OT), exhibiting experimental detection limits of 200 ppb and 5 ppm to NO2 and H2 in dry air, respectively. Long-term stability of the electrical response recorded over one year of sustained conditions at 150 °C OT and different gases demonstrated good reproducibility of the electrical signal. The role played by WO3 and WS2 upon gas response has been addressed and a likely reaction gas-mechanism presented. Controlling the microstructure and surface oxidation of exfoliated Transition Metal Dichalcogenides (TMDs) represents a stepping-stone to assess the reproducibility and long-term response of TMDs monolayers in gas sensing applications.

3.
ACS Appl Mater Interfaces ; 8(44): 30440-30448, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27750418

RESUMO

Highly doped wide band gap metal oxide nanocrystals have recently been proposed as building blocks for applications as transparent electrodes, electrochromics, plasmonics, and optoelectronics in general. Here we demonstrate the application of gallium-doped zinc oxide (GZO) nanocrystals as novel plasmonic and chemiresistive sensors for the detection of hazardous gases including hydrogen (H2) and nitrogen dioxide (NO2). GZO nanocrystals with a tunable surface plasmon resonance in the near-infrared are obtained using a colloidal heat-up synthesis. Thanks to the strong sensitivity of the plasmon resonances to chemical and electrical changes occurring at the surface of the nanocrystals, such optical features can be used to detect the presence of toxic gases. By monitoring the changes in the dopant-induced plasmon resonance in the near-infrared, we demonstrate that GZO thin films prepared depositing an assembly of highly doped GZO colloids are able to optically detect both oxidizing and reducing gases at mild (<100 °C) operating temperatures. Combined optical and electrical measurements show that trivalent dopants within ZnO nanocrystals enhance the gas sensing response compared to undoped ZnO. Moreover, improved sub-ppm of NO2 gas sensitivity is achieved by activating the sensors response through combined purple-blue (λ = 430 nm) light irradiation and mild heating at 75 °C. In addition, these thin films based on degenerately doped semiconductors are highly transparent in the visible range, enabling the fabrication of "invisible" gas sensors. The use of highly doped semiconductive nanocrystals for both IR plasmonic and chemiresistive sensors represent a marked advancement toward the development of highly sensitive and selective devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA